47 research outputs found

    Nitrogen forms affect root structure and water uptake in the hybrid poplar

    Get PDF
    The study analyses the effects of two different forms of nitrogen fertilisation (nitrate and ammonium) on root structure and water uptake of two hybrid poplar (Populus maximowiczii x P. balsamifera) clones in a field experiment. Water uptake was studied using sap flow gauges on individual proximal roots and coarse root structure was examined by excavating 18 whole-root systems. Finer roots were scanned and analyzed for architecture. Nitrogen forms did not affect coarse-root system development, but had a significant effect on fine-root development. Nitrate-treated trees presented higher fine:coarse root ratios and higher specific root lengths than control or ammonium treated trees. These allocation differences affected the water uptake capacity of the plants as reflected by the higher sapflow rate in the nitrate treatment. The diameter of proximal roots at the tree base predicted well the total root biomass and length. The diameter of smaller lateral roots also predicted the lateral root mass, length, surface area and the number of tips. The effect of nitrogen fertilisation on the fine root structure translated into an effect on the functioning of the fine roots forming a link between form (architecture) and function (water uptake)

    Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine

    Get PDF
    While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems

    Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?

    Get PDF
    Optimization theory in combination with canopy modeling is potentially a powerful tool for evaluating the adaptive significance of photosynthesis-related plant traits. Yet its successful application has been hampered by a lack of agreement on the appropriate optimization criterion. Here we review how models based on different types of optimization criteria have been used to analyze traits—particularly N reallocation and leaf area indices—that determine photosynthetic nitrogen-use efficiency at the canopy level. By far the most commonly used approach is static-plant simple optimization (SSO). Static-plant simple optimization makes two assumptions: (1) plant traits are considered to be optimal when they maximize whole-stand daily photosynthesis, ignoring competitive interactions between individuals; (2) it assumes static plants, ignoring canopy dynamics (production and loss of leaves, and the reallocation and uptake of nitrogen) and the respiration of nonphotosynthetic tissue. Recent studies have addressed either the former problem through the application of evolutionary game theory (EGT) or the latter by applying dynamic-plant simple optimization (DSO), and have made considerable progress in our understanding of plant photosynthetic traits. However, we argue that future model studies should focus on combining these two approaches. We also point out that field observations can fit predictions from two models based on very different optimization criteria. In order to enhance our understanding of the adaptive significance of photosynthesis-related plant traits, there is thus an urgent need for experiments that test underlying optimization criteria and competing hypotheses about underlying mechanisms of optimization

    Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat

    Get PDF
    This study aims to investigate whether orexigenic antipsychotic drugs may induce dyslipidemia and glucose disturbances in female rats through direct perturbation of metabolically active peripheral tissues, independent of prior weight gain. Methods In the current study, we examined whether a single intraperitoneal injection of clozapine or olanzapine induced metabolic disturbances in adult female outbred Sprague–Dawley rats. Serum glucose and lipid parameters were measured during time-course experiments up to 48 h. Real-time quantitative PCR was used to measure specific transcriptional alterations in lipid and carbohydrate metabolism in adipose tissue depots or in the liver. Results Our results demonstrated that acute administration of clozapine or olanzapine induced a rapid, robust elevation of free fatty acids and glucose in serum, followed by hepatic accumulation of lipids evident after 12–24 h. These metabolic disturbances were associated with biphasic patterns of gluconeogenic and lipid-related gene expression in the liver and in white adipose tissue depots. Conclusion Our results support that clozapine and olanzapine are associated with primary effects on carbohydrate and lipid metabolism associated with transcriptional changes in metabolically active peripheral tissues prior to the development of drug-induced weight gain

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Managing Carbon

    Get PDF
    Storing carbon (C) and offsetting carbon dioxide (CO2) emissions with the use of wood for energy, both of which slow emissions of CO2 into the atmosphere, present significant challenges for forest management (IPCC 2001). In the United States, there has been a net increase in C in forests and in harvested wood products stocks (Tables 7.1 and 7.2), a result of historical and recent ecological conditions, management practices, and use of forest products (Birdsey et al. 2006). However, recent projections for the forest sector suggest that annual C storage could begin to decline, and U.S. forests could become a net C emitter of tens to hundreds of Tg C year ¹ within a few decades (USDA FS 2012a). It is therefore urgent to identify effective C management strategies, given the complexity of factors that drive the forest C cycle and the multiple objectives for which forests are managed. An ideal C management activity contributes benefits beyond increasing C storage by achieving other management objectives and providing ecosystem services in a sustainable manner. Strategies for effectively managing forest C stocks and offsetting C emissions requires a thorough understanding of biophysical and social influences on the forest C cycle (Birdsey et al. 1993). Successful policies and incentives may be chosen to support strategies if sufficient knowledge of social processes (e.g., landowner or wood-user response to incentives and markets) is available. For example, if C stocks are expected to decrease owing to decreasing forest land area caused by exurban development, policies or incentives to avoid deforestation in those areas may be effective. If C stocks are expected to decrease owing to the effects of a warmer climate, reducing stand densities may retain C over the long term by increasing resilience to drought and other stressors and by reducing crown fire hazard (Jackson et al. 2005; Reinhardt et al. 2008). Protecting old forests and other forests that have high C stocks may be more effective than seeking C offsets associated with wood use, especially if those forests would recover C more slowly in an altered climate. If climate change increases productivity in a given area over a long period of time, increasing forest C stocks through intensive management and forest products, including biomass energy, may be especially effective. It is equally important to know which strategies might make some management practices unacceptable (e.g., reducing biodiversity). However, no standard evaluation framework exists to aid decision making on alternative management strategies for maximizing C storage while minimizing risks and tradeoffs. Here we discuss (1) where forest C is stored in the United States, (2) how to measure forest C through space and time, (3) effectiveness of various management strategies in reducing atmospheric greenhouse gases (GHG), and (4) effectiveness of incentives, regulations, and institutional arrangements for implementing C management. Understanding of biophysical and social influences on the forest C cycle (Birdsey et al. 1993). Successful policies and incentives may be chosen to support strategies if sufficient knowledge of social processes (e.g., landowner or wood-user response to incentives and markets) is available. For example, if C stocks are expected to decrease owing to decreasing forest land area caused by exurban development, policies or incentives to avoid deforestation in those areas may be effective. If C stocks are expected to decrease owing to the effects of a warmer climate, reducing stand densities may retain C over the long term by increasing resilience to drought and other stressors and by reducing crown fire hazard (Jackson et al. 2005; Reinhardt et al. 2008). Protecting old forests and other forests that have high C stocks may be more effective than seeking C offsets associated with wood use, especially if those forests would recover C more slowly in an altered climate. If climate change increases productivity in a given area over a long period of time, increasing forest C stocks through intensive management and forest products, including biomass energy, may be especially effective. It is equally important to know which strategies might make some management practices unacceptable (e.g., reducing biodiversity). However, no standard evaluation framework exists to aid decision making on alternative management strategies for maximizing C storage while minimizing risks and tradeoffs. Here we discuss (1) where forest C is stored in the United States, (2) how to measure forest C through space and time, (3) effectiveness of various management strategies in reducing atmospheric greenhouse gases (GHG), and (4) effectiveness of incentives, regulations, and institutional arrangements for implementing C management
    corecore