7,701 research outputs found
The effect of portacaval transposition on carbohydrate metabolism: Experimental and clinical observations
An investigation was conducted of the influence of portacaval transposition upon carbohydrate metabolism in 45 dogs. In 17 dogs, hepatic glycogen content was measured before and from 45 to 75 days after transposition. A reduction in glycogen content, principally in the TCA soluble fraction, was noted in 14 animals. The mean loss of total glycogen was 51 percent, and the mean loss of TCA soluble glycogen was 70 percent. In control animals hepatic deglycogenation did not occur. Despite the reduction in hepatic glycogen content, the animals were capable of glucagon-induced glycogenolysis using very small test doses. After transposition, a greater response to intraportal injection was noted as compared to that obtained with systemic venous infusions. Other alterations in carbohydrate metabolism were also measured. These included a reduction in the duration and magnitude of the hyperglycemic response to oral glucose loads. The profile of glycemic response under these conditions was studied, and demonstrated to be greatest in the portal vein, least in the peripheral venous blood, and of intermediate magnitude in the peripheral arteries. Based upon the hepatic deglycogenating effect of portacaval transposition in dogs, this operation was used for the treatment of an 8 1 2-year-old child with glycogen storage disease and concomitant portal cirrhosis. The portacaval transposition was performed in preference to a standard portacaval shunt. The enzyme defect in the patient was extensively studied before and after transposition. Prior to surgery, she was demonstrated to have Type IIIB glycogenosis (amylo-1,6-glucosidase deficiency confined to the liver). Eight and one half months after operation, the quantities of glycogen in liver and muscle and the enzyme activities showed no significant alteration. The clinical response to portacaval transposition was gratifying. There has been a decrease in the hepatosplenomegaly, rapid growth, a diminution in the pre-existing hypersplenism, and a considerable increase in the child's physical activity. Most of these benefits are ascribable to the effective portal decompressive procedure. Whether any metabolic benefit derived from the portacaval transposition is problematical. © 1965
Coffee consumption and prostate cancer risk: further evidence for inverse relationship
<p>Abstract</p> <p>Background</p> <p>Higher consumption of coffee intake has recently been linked with reduced risk of aggressive prostate cancer (PC) incidence, although meta-analysis of other studies that examine the association between coffee consumption and overall PC risk remains inconclusive. Only one recent study investigated the association between coffee intake and grade-specific incidence of PC, further evidence is required to understand the aetiology of aggressive PCs. Therefore, we conducted a prospective study to examine the relationship between coffee intake and overall as well as grade-specific PC risk.</p> <p>Methods</p> <p>We conducted a prospective cohort study of 6017 men who were enrolled in the Collaborative cohort study in the UK between 1970 and 1973 and followed up to 31st December 2007. Cox Proportional Hazards Models were used to evaluate the association between coffee consumption and overall, as well as Gleason grade-specific, PC incidence.</p> <p>Results</p> <p>Higher coffee consumption was inversely associated with risk of high grade but not with overall risk of PC. Men consuming 3 or more cups of coffee per day experienced 55% lower risk of high Gleason grade disease compared with non-coffee drinkers in analysis adjusted for age and social class (HR 0.45, 95% CI 0.23-0.90, p value for trend 0.01). This association changed a little after additional adjustment for Body Mass Index, smoking, cholesterol level, systolic blood pressure, tea intake and alcohol consumption.</p> <p>Conclusion</p> <p>Coffee consumption reduces the risk of aggressive PC but not the overall risk.</p
Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences
We propose a fully automatic method for fitting a 3D morphable model to
single face images in arbitrary pose and lighting. Our approach relies on
geometric features (edges and landmarks) and, inspired by the iterated closest
point algorithm, is based on computing hard correspondences between model
vertices and edge pixels. We demonstrate that this is superior to previous work
that uses soft correspondences to form an edge-derived cost surface that is
minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic
Improved genome editing in human cell lines using the CRISPR method
The Cas9/CRISPR system has become a popular choice for genome editing. In this system, binding of a single guide (sg) RNA to a cognate genomic sequence enables the Cas9 nuclease to induce a double-strand break at that locus. This break is next repaired by an error-prone mechanism, leading to mutation and gene disruption. In this study we describe a range of refinements of the method, including stable cell lines expressing Cas9, and a PCR based protocol for the generation of the sgRNA. We also describe a simple methodology that allows both elimination of Cas9 from cells after gene disruption and re-introduction of the disrupted gene. This advance enables easy assessment of the off target effects associated with gene disruption, as well as phenotype-based structure-function analysis. In our study, we used the Fan1 DNA repair gene as control in these experiments. Cas9/CRISPR-mediated Fan1 disruption occurred at frequencies of around 29%, and resulted in the anticipated spectrum of genotoxin hypersensitivity, which was rescued by re-introduction of Fan1
Stellar winds from Massive Stars
We review the various techniques through which wind properties of massive
stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet
(WR) stars and cool supergiants - are derived. The wind momentum-luminosity
relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss
rates of O stars and blue supergiants which is superior to previous
parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence,
Magellanic Cloud O star mass-loss rates are typically matched to within a
factor of two for various calibrations. Stellar winds from LBVs are typically
denser and slower than equivalent B supergiants, with exceptional mass-loss
rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001).
Recent mass-loss rates for Galactic WR stars indicate a downward revision of
2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997),
although evidence for a metallicity dependence remains inconclusive (Crowther
2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants
from alternative techniques remain highly contradictory. Recent Galactic and
LMC results for RSG reveal a large scatter such that typical mass-loss rates
lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of
binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren
ed.), Kluwe
Macroscopic transport by synthetic molecular machines
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Acute mesenteric ischemia and duodenal ulcer perforation: a unique double pathology
Background: Acute mesenteric ischaemia and duodenal perforation are surgical emergencies with serious
consequences. Patients presenting with acute mesenteric ischaemia alone face a high mortality rate as high as 60%
whereas those presenting with peptic ulcer perforation the mortality rates range from 6-14%. There are very few
reported cases of patients presenting with this dual pathology.
Case presentation: We report a unique case of a 53 year old Italian lady who presented with acute mesenteric
ischaemia and duodenal perforation. This is the first report of massive bowel ischaemia and duodenal perforation
with no apparent underlying common pathophysiology leading to this presentation.
Conclusion: Early management in the intensive care unit and appropriate surgical intervention maximised the
patient’s chances of survival despite the poor prognosis associated with her dual pathology. The rare pathology of
the patient described can be explained by two possible hypotheses: peptic ulcer disease causing duodenal
ulceration, which precipitated ischaemic infarction of the small bowel. The second hypothesis is the patient
developed a stress related ulcer following ischaemic bowel infarction secondary to arterial thrombosis
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)
Bovine TB is a major problem for the agricultural industry in several
countries. TB can be contracted and spread by species other than cattle and
this can cause a problem for disease control. In the UK and Ireland, badgers
are a recognised reservoir of infection and there has been substantial
discussion about potential control strategies. We present a coupling of
individual based models of bovine TB in badgers and cattle, which aims to
capture the key details of the natural history of the disease and of both
species at approximately county scale. The model is spatially explicit it
follows a very large number of cattle and badgers on a different grid size for
each species and includes also winter housing. We show that the model can
replicate the reported dynamics of both cattle and badger populations as well
as the increasing prevalence of the disease in cattle. Parameter space used as
input in simulations was swept out using Latin hypercube sampling and
sensitivity analysis to model outputs was conducted using mixed effect models.
By exploring a large and computationally intensive parameter space we show that
of the available control strategies it is the frequency of TB testing and
whether or not winter housing is practised that have the most significant
effects on the number of infected cattle, with the effect of winter housing
becoming stronger as farm size increases. Whether badgers were culled or not
explained about 5%, while the accuracy of the test employed to detect infected
cattle explained less than 3% of the variance in the number of infected cattle
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
- …
