16,171 research outputs found
In Situ Structure Characterization in Slot-Die-Printed All-Polymer Solar Cells with Efficiency Over 9%
Herein, high-performance printed all-polymer solar cells (all-PSCs) based on a bulk-heterojunction (BHJ) blend film are demonstrated using PTzBI as the donor and N2200 as the acceptor. A slot-die process is used to prepare the BHJ blend, which is a cost-effective, high-throughput approach to achieve large-area photovoltaic devices. The real-time crystallization of polymers in the film drying process is investigated by in situ grazing incidence wide-angle X-ray scattering characterization. Printing is found to significantly improve the crystallinity of the polymer blend in comparison with spin coating. Moreover, printing with 1,8-diiodooctane as the solvent additive enhances the polymer aggregation and crystallization during solvent evaporation, eventually leading to multi-length-scale phase separation, with PTzBI-rich domains in-between the N2200 crystalline fibers. This unique morphology achieved by printing fabrication results in an impressively high power conversion efficiency of 9.10%, which is the highest efficiency reported for printed all-PSCs. These findings provide important guidelines for controlling film drying dynamics for processing all-PSCs
Gold on graphene as a substrate for surface enhanced Raman scattering study
In this paper, we report our study on gold (Au) films with different
thicknesses deposited on single layer graphene (SLG) as surface enhanced Raman
scattering (SERS) substrates for the characterization of rhodamine (R6G)
molecules. We find that an Au film with a thickness of ~7 nm deposited on SLG
is an ideal substrate for SERS, giving the strongest Raman signals for the
molecules and the weakest photoluminescence (PL) background. While Au films
effectively enhance both the Raman and PL signals of molecules, SLG effectively
quenches the PL signals from the Au film and molecules. The former is due to
the electromagnetic mechanism involved while the latter is due to the strong
resonance energy transfer from Au to SLG. Hence, the combination of Au films
and SLG can be widely used in the characterization of low concentration
molecules with relatively weak Raman signals.Comment: 11 pages, 4 figure
ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways
Urinary Exosomes Contain MicroRNAs Capable of Paracrine Modulation of Tubular Transporters in Kidney
Exosomes derived from all nephron segments are present in human urine, where their functionality is incompletely understood. Most studies have focused on biomarker discovery rather than exosome function. Through sequencing we identified the miRNA repertoire of urinary exosomes from healthy volunteers; 276 mature miRNAs and 345 pre-miRNAs were identified (43%/7% of reads). Among the most abundant were members of the miR-10, miR-30 and let-7 families. Targets for the identified miRNAs were predicted using five different databases; genes encoding membrane transporters and their regulators were enriched, highlighting the possibility that these miRNAs could modulate key renal tubular functions in a paracrine manner. As proof of concept, cultured renal epithelial cells were exposed to urinary exosomes and cellular exosomal uptake was confirmed; thereafter, reduced levels of the potassium channel ROMK and kinases SGK1 and WNK1 were observed in a human collecting duct cell line, while SPAK was unaltered. In proximal tubular cells, mRNA levels of the amino acid transporter gene SLC38A2 were diminished and reflected in a significant decrement of its encoded protein SNAT2. Protein levels of the kinase SGK1 did not change. Thus we demonstrated a novel potential function for miRNA in urinary exosomes.This work was supported by the Wellcome Trust (grant 088489/Z/09/Z to FEKF and Strategic award 100140/Z/12/Z to the Cambridge Institute for Medical Research). The sequencing facility is supported by the Cambridge Biomedical Research Centre
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication
Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy
We have investigated hydrogen diffusion in hydrogenated 〈100〉 Si/Si homoepitaxial structures, which were grown by molecular beam epitaxy at various temperatures. The substrate growth temperature can significantly affect the H diffusion behavior, with higher growth temperatures resulting in deeper H diffusion. For the Si/Si structure grown at the highest temperature of 800°C, H trapping occurs at the epitaxial Si/Si substrate interface, which results in the formation of (100) oriented microcracks at the interface. The mechanism of H trapping and the potential application of these findings for the development of a method of transferring ultrathin Si layers are discussed. © 2006 American Institute of Physics
Finite-size scaling considerations on the ground state microcanonical temperature in entropic sampling simulations
In this work we discuss the behavior of the microcanonical temperature
obtained by means of numerical entropic
sampling studies. It is observed that in almost all cases the slope of the
logarithm of the density of states is not infinite in the ground state,
since as expected it should be directly related to the inverse temperature
. Here we show that these finite slopes are in fact due to
finite-size effects and we propose an analytic expression for the
behavior of when . To
test this idea we use three distinct two-dimensional square lattice models
presenting second-order phase transitions. We calculated by exact means the
parameters and for the two-states Ising model and for the and
states Potts model and compared with the results obtained by entropic sampling
simulations. We found an excellent agreement between exact and numerical
values. We argue that this new set of parameters and represents an
interesting novel issue of investigation in entropic sampling studies for
different models
IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells
Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al
Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate
Hen egg-white lysozyme (HEWL) was the first enzyme to have its three-dimensional structure determined by X-ray diffraction techniques(1). A catalytic mechanism, featuring a long-lived oxo-carbenium-ion intermediate, was proposed on the basis of model-building studies(2). The `Phillips' mechanism is widely held as the paradigm for the catalytic mechanism of beta -glycosidases that cleave glycosidic linkages with net retention of configuration of the anomeric centre. Studies with other retaining beta -glycosidases, however, provide strong evidence pointing to a common mechanism for these enzymes that involves a covalent glycosyl-enzyme intermediate, as previously postulated(3). Here we show, in three different cases using electrospray ionization mass spectrometry, a catalytically competent covalent glycosyl-enzyme intermediate during the catalytic cycle of HEWL. We also show the three-dimensional structure of this intermediate as determined by Xray diffraction. We formulate a general catalytic mechanism for all retaining beta -glycosidases that includes substrate distortion, formation of a covalent intermediate, and the electrophilic migration of C1 along the reaction coordinate
Gli astronomi romani e i loro strumenti. Christiaan Huygens di fronte agli estimatori e detrattori romani delle osservazioni di Saturno (1655-1665)
- …
