5,762 research outputs found
Recommended from our members
Orientation Information in Encoding Facial Expressions for People With Central Vision Loss.
Purpose:Patients with central vision loss face daily challenges on performing various visual tasks. Categorizing facial expressions is one of the essential daily activities. The knowledge of what visual information is crucial for facial expression categorization is important to the understanding of the functional performance of these patients. Here we asked how the performance for categorizing facial expressions depends on the spatial information along different orientations for patients with central vision loss. Methods:Eight observers with central vision loss and five age-matched normally sighted observers categorized face images into four expressions: angry, fearful, happy, and sad. An orientation filter (bandwidth = 23°) was applied to restrict the spatial information within the face images, with the center of the filter ranged from horizontal (0°) to 150° in steps of 30°. Face images without filtering were also tested. Results:When the stimulus visibility was matched, observers with central vision loss categorized facial expressions just as well as their normally sighted counterparts, and showed similar confusion and bias patterns. For all four expressions, performance (normalized d'), uncorrelated with any of the observers' visual characteristics, peaked between -30° and 30° filter orientations and declined systematically as the filter orientation approached vertical (90°). Like normally sighted observers, observers with central vision loss also relied mainly on mouth and eye regions to categorize facial expressions. Conclusions:Similar to people with normal vision, people with central vision loss rely primarily on the spatial information around the horizontal orientation, in particular the regions around the mouth and eyes, for recognizing facial expressions
Evaluation of cross-beam vector Doppler ultrasound systems for accurate 3-D velocity measurements
Vector Doppler ultrasound (VDUS) systems offer the potential for improved accuracy in mapping of complex flow parameters, such as recirculation, turbulence, and shear stress which are probable risk factors leading to vascular disease and stroke. Cross-beam VDUS systems were evaluated for velocity accuracy to optimize the number of receivers for the inter-beam angle, wall filter, system orientation, and complexity of flow seen in a stenosed carotid artery. Preliminary results for velocity estimation show promise for validation of numerical results. © 2012 IEEE.published_or_final_versio
Implication of the overlap representation for modelling generalized parton distributions
Based on a field theoretically inspired model of light-cone wave functions,
we derive valence-like generalized parton distributions and their double
distributions from the wave function overlap in the parton number conserved
s-channel. The parton number changing contributions in the t-channel are
restored from duality. In our construction constraints of positivity and
polynomiality are simultaneously satisfied and it also implies a model
dependent relation between generalized parton distributions and transverse
momentum dependent parton distribution functions. The model predicts that the
t-behavior of resulting hadronic amplitudes depends on the Bjorken variable
x_Bj. We also propose an improved ansatz for double distributions that embeds
this property.Comment: 15 pages, 8 eps figure
Gold on graphene as a substrate for surface enhanced Raman scattering study
In this paper, we report our study on gold (Au) films with different
thicknesses deposited on single layer graphene (SLG) as surface enhanced Raman
scattering (SERS) substrates for the characterization of rhodamine (R6G)
molecules. We find that an Au film with a thickness of ~7 nm deposited on SLG
is an ideal substrate for SERS, giving the strongest Raman signals for the
molecules and the weakest photoluminescence (PL) background. While Au films
effectively enhance both the Raman and PL signals of molecules, SLG effectively
quenches the PL signals from the Au film and molecules. The former is due to
the electromagnetic mechanism involved while the latter is due to the strong
resonance energy transfer from Au to SLG. Hence, the combination of Au films
and SLG can be widely used in the characterization of low concentration
molecules with relatively weak Raman signals.Comment: 11 pages, 4 figure
Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel
Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation
Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations
The semiparametric accelerated failure time model is not as widely used as
the Cox relative risk model mainly due to computational difficulties. Recent
developments in least squares estimation and induced smoothing estimating
equations provide promising tools to make the accelerate failure time models
more attractive in practice. For semiparametric multivariate accelerated
failure time models, we propose a generalized estimating equation approach to
account for the multivariate dependence through working correlation structures.
The marginal error distributions can be either identical as in sequential event
settings or different as in parallel event settings. Some regression
coefficients can be shared across margins as needed. The initial estimator is a
rank-based estimator with Gehan's weight, but obtained from an induced
smoothing approach with computation ease. The resulting estimator is consistent
and asymptotically normal, with a variance estimated through a multiplier
resampling method. In a simulation study, our estimator was up to three times
as efficient as the initial estimator, especially with stronger multivariate
dependence and heavier censoring percentage. Two real examples demonstrate the
utility of the proposed method
Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer
Background: Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC).
Methods and Findings: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival.
Conclusions: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression
Modeling recursive RNA interference.
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments
Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models
We compare, for the overlapping time frame 1962-2000, the estimate of the
northern hemisphere (NH) mid-latitude winter atmospheric variability within the
XX century simulations of 17 global climate models (GCMs) included in the
IPCC-4AR with the NCEP and ECMWF reanalyses. We compute the Hayashi spectra of
the 500hPa geopotential height fields and introduce an integral measure of the
variability observed in the NH on different spectral sub-domains. Only two
high-resolution GCMs have a good agreement with reanalyses. Large biases, in
most cases larger than 20%, are found between the wave climatologies of most
GCMs and the reanalyses, with a relative span of around 50%. The travelling
baroclinic waves are usually overestimated, while the planetary waves are
usually underestimated, in agreement with previous studies performed on global
weather forecasting models. When comparing the results of various versions of
similar GCMs, it is clear that in some cases the vertical resolution of the
atmosphere and, somewhat unexpectedly, of the adopted ocean model seem to be
critical in determining the agreement with the reanalyses. The GCMs ensemble is
biased with respect to the reanalyses but is comparable to the best 5 GCMs.
This study suggests serious caveats with respect to the ability of most of the
presently available GCMs in representing the statistics of the global scale
atmospheric dynamics of the present climate and, a fortiori, in the perspective
of modelling climate change.Comment: 39 pages, 8 figures, 2 table
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions
Increased reflectance from the inclusion of highly scattering particles at
low volume fractions in an insulating dielectric offers a promising way to
reduce radiative thermal losses at high temperatures. Here, we investigate
plasmonic resonance driven enhanced scattering from microinclusions of
low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating
composite to tailor its infrared reflectance for minimizing thermal losses from
radiative transfer. To this end, we compute the spectral properties of the
microcomposites using Monte Carlo modeling and compare them with results from
Fresnel equations. The role of particle size-dependent Mie scattering and
absorption efficiencies, and, scattering anisotropy are studied to identify the
optimal microinclusion size and material parameters for maximizing the
reflectance of the thermal radiation. For composites with Si and Ge
microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident
blackbody radiation from sources at temperatures in the range 400 - 1600
{\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from
the plasmonic resonances due to charge carriers generated from defect states
within the semiconductor bandgap. Our results thus open up the possibility of
developing efficient high-temperature thermal insulators through use of the
low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8
Figures
- …
