73 research outputs found

    Coconut in the Mekong Delta: An Assessment of Competitivenessand Industry Potential

    Get PDF
    The numbers surrounding the world coconut industry are substantial – 55,500,000,000 coconuts produced every year from 12,000,000 hectares supporting an industry worth USD 6 billion at wholesale. Yet despite the size and wealth of the industry most coconut growers are among the poorest in their society and over 1 million tonnes of coconut dust are dumped into the environment every year. In the Mekong Delta, riverbanks shaded with coconut trees are an iconic part of the landscape, but only in the last decade has the local coconut industry taken the first steps to becoming a modern, competitive industry. Much of this recent development has happened in Ben Tre province, at the heart of the industry in the Delta with the greatest concentration of coconut trees and businesses. The Ben Tre authorities and industry leaders are now looking to help the industry mature into an internationally competitive and sustainable coconut industry that maximises the value created for the local community, businesses and coconut farmers. This study is part of that process and aims to provide evidence of the current state of the global coconut industry and the local industry in Ben Tre and the wider Mekong Delta and to assess specific opportunities for the industry’s future development. The study also identifies several promising commercial opportunities for local coconut businesses and the impacts these could have on the company’s own bottom-line profits as well as the wider industry. It supplements extensive secondary data with insights and evidence gathered through an international benchmarking exercise with leading competitor countries, including the Philippines, Sri Lanka and Thailand as well as the local industry in Ben Tre

    Accounting for spatial variability in life cycle cost-effectiveness assessments of environmental impact abatement measures

    Get PDF
    Purpose: The environmental and economic impacts of livestock production systems are typically assessed using global characterisation factors and data, even though several impact categories call for site-specific assessments. Here, we account for spatial variability by addressing potential interactions between geographic locality and the cost-effectiveness of farm investments that aim to reduce system environmental impact, using Danish pig production as a case-in-point. Methods: An LCA-based, spatially explicit environmental abatement cost framework was developed to assess the cost-effectiveness of potential environmental abatement strategies. The framework was tested for Danish pig production in a “4 manure management × 4 geographic location” scenario analysis design. In addition to the baseline, the alternative manure management strategies were on-farm anaerobic digestion, slurry acidification and screw press slurry separation, implemented in an integrated pig farming system. The geographic locations differed in their proximity to Natura 2000 areas and in pig farming density. Eight different impact categories were assessed through an LCA using spatially explicit characterisation factors whenever possible, and annualised abatement potential was estimated for each manure management scenario and in each geographic location. We also estimated the financial performance for each scenario, through a discounted cash flow analysis at a whole-farm level. Results and discussion: We observed significant interactions between geographic location and system environmental and economic performance under baseline conditions. Significant location effects were also observed for the cost-effectiveness of all manure management strategies tested. Anaerobic digestion was the only “win–win” strategy that increased farm profits while reducing system environmental impact in two of the geographic cases: when implemented in a region of high pig farming density located near Natura 2000 and when implemented in a region of high pig farming density located far from Natura 2000 areas. Slurry acidification and slurry separation achieved sizeable abatement potential for impacts on ecosystem quality but incurred large additional costs in all geographic case studies considered, particularly when arable land was limited near the pig farm. Conclusions: Accounting for basic spatial characteristics within an environmental abatement cost framework had significant impact on the cost-effectiveness of on-farm investments for mitigation of system environmental impact. To the best of our knowledge, no studies to date have utilised such spatial characteristics within environmental abatement cost modelling of livestock farming systems. The presented framework has the potential to be further expanded using more detailed spatial, economic and geophysical data, which could ultimately improve decision-making regarding cost-effective investments that aim to improve the sustainability of livestock farming operations.</p
    corecore