64 research outputs found
Improving collection efforts to avoid loss of biodiversity: lessons from comprehensive sampling of lycophytes and ferns in the subtropical Atlantic Forest
Global patterns and environmental drivers of forest functional composition
Aim: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. /
Location: Global. /
Time period: Recent. /
Major taxa studied: Trees. /
Methods: We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). /
Results: Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. /
Main conclusions: Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, the distribution of tree functional traits appears to be driven more by species presence than species abundance
Supersymmetric QCD corrections to and the Bernstein-Tkachov method of loop integration
The discovery of charged Higgs bosons is of particular importance, since
their existence is predicted by supersymmetry and they are absent in the
Standard Model (SM). If the charged Higgs bosons are too heavy to be produced
in pairs at future linear colliders, single production associated with a top
and a bottom quark is enhanced in parts of the parameter space. We present the
next-to-leading-order calculation in supersymmetric QCD within the minimal
supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD
corrections. In addition to the usual approach to perform the loop integration
analytically, we apply a numerical approach based on the Bernstein-Tkachov
theorem. In this framework, we avoid some of the generic problems connected
with the analytical method.Comment: 14 pages, 6 figures, accepted for publication in Phys. Rev.
Similaridade entre Adultos e Regenerantes do Componente Arbóreo em Floresta com Araucária
Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species
Domains of quality of life: results of a three-stage Delphi consensus procedure among patients, family of patients, clinicians, scientists and the general public
The effects of house moves during early childhood on child mental health at age 9 years
BACKGROUND: Residential mobility is common in families with young children; however, its impact on the social development of children is unclear. We examined associations between the number, timing and type of house moves in childhood and child behaviour problems using data from an ongoing longitudinal study. METHODS: Complete data on residential mobility and child behaviour was available for 403 families. Three aspects of mobility were considered: (a) number of house moves from birth to <2 years, 2 to <5 years and 5 to 9 years; (b) lifetime number of house moves; and (c) moves associated with different housing trajectories characterized by changes in housing tenure. The primary outcomes were internalizing and externalizing behaviour problems at 9 years derived from Achenbach’s Child Behaviour Checklist. Linear regression analyses were used to investigate the effect of the housing variables on internalizing and externalizing behaviour problem scores with adjustment for a range of sociodemographic and household covariates. RESULTS: Moving house ≥2 times before 2 years of age was associated with an increased internalizing behaviour score at age 9 years. This association remained after adjustment for sociodemographic and household factors. There was no association between increased residential mobility in other time periods and internalizing behaviour, or mobility in any period and externalizing behaviour. There was no effect of lifetime number of moves, or of an upwardly or downwardly mobile housing trajectory. However, a housing trajectory characterized by continuous rental occupancy was associated with an increased externalizing behaviour score. CONCLUSIONS: These findings may suggest that there is a sensitive period, in the first few years of life, in which exposure to increased residential mobility has a detrimental effect on mental health in later childhood.Alice R. Rumbold, Lynne C. Giles, Melissa J. Whitrow, Emily J. Steele, Christopher E. Davies, Michael J. Davies and Vivienne M. Moor
Recommended from our members
Native diversity buffers against severity of non-native tree invasions.
This is the final version. Available from Nature Research via the DOI in this record. Data availability:
Data used in this study can be found in cited references for the Global Naturalized Alien Flora (GloNAF) database6 (non-native status), the KEW Plants of the World database5 (native ranges) and the Global Environmental Composite63,77 (environmental data layers). Plant trait data were extracted from Maynard et al.78. Data from the Global Forest Biodiversity Initiative (GFBI) database57 are not available due to data privacy and sharing restrictions, but can be obtained upon request via Science-I (https://science-i.org/) or GFBI (gfbinitiative.org) and an approval from data contributors.Code availability
All code used to complete analyses for the manuscript is available at the following link: https://github.com/thomaslauber/Global-Tree-Invasion. Data analyses were conducted and were visualizations generated in R (v. 4.2.2), Python (v. 3.9.7), Google Earth Engine (earthengine-api 0.1.306), QGIS-LTR (v. 3.16.7) and the ETH Zurich Euler cluster.Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.Swiss National Science FoundationSwiss National Science FoundationBernina FoundationDOB Ecolog
Evenness mediates the global relationship between forest productivity and richness
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.
2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.
3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.
4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
- …
