19 research outputs found

    Applied physics:optical trapping for space mirrors

    No full text

    Optical trapping for space mirrors

    No full text

    Comparative effectiveness and safety of anticoagulants for the treatment of heparin‐induced thrombocytopenia

    No full text
    BACKGROUND The effectiveness and safety of non-heparin anticoagulants for the treatment of heparin-induced thrombocytopenia (HIT) are not fully established, and the optimal treatment strategy is unknown. In a systematic review and meta-analysis, we aimed to determine precise rates of platelet recovery, new or progressive thromboembolism (TE), major bleeding, and death for all non-heparin anticoagulants and to study potential sources of variability. METHODS Following a detailed protocol (PROSPERO: CRD42020219027), EMBASE and Medline were searched for all studies reporting clinical outcomes of patients treated with non-heparin anticoagulants (argatroban, danaparoid, fondaparinux, direct oral anticoagulants [DOAC], bivalirudin, and other hirudins) for acute HIT. Proportions of patients with the outcomes of interest were pooled using a random-effects model for each drug. The influence of the patient population, the diagnostic test used, the study design, and the type of article was assessed. RESULTS Out of 3194 articles screened, 92 studies with 119 treatment groups describing 4698 patients were included. The pooled rates of platelet recovery ranged from 74% (bivalirudin) to 99% (fondaparinux), TE from 1% (fondaparinux) to 7% (danaparoid), major bleeding from 1% (DOAC) to 14% (bivalirudin), and death from 7% (fondaparinux) to 19% (bivalirudin). Confidence intervals were mostly overlapping, and results were not influenced by patient population, diagnostic test used, study design, or type of article. DISCUSSION Effectiveness and safety outcomes were similar among various anticoagulants, and significant factors affecting these outcomes were not identified. These findings support fondaparinux and DOACs as viable alternatives to conventional anticoagulants for treatment of acute HIT in clinical practice

    Lateral optical binding between two colloidal particles

    No full text
    An optical binding force between two nearby colloidal particles trapped by two coherent laser beams is measured by phase-sensitive detection. The binding force is long-range and spatially oscillatory. For identical linearly-polarized incident beams, the oscillation period is equal to the optical wavelength. For mutually perpendicular polarizations, a new force appears with half-wavelength periodicity, caused by double inter-particle scattering. This force is observable only with cross-polarized incident beams, for which the stronger single-scattering forces are forbidden by parity
    corecore