82 research outputs found
The roles of factor Va and protein S in formation of the activated protein C/protein S/factor Va inactivation complex.
BACKGROUND: Activated protein C (APC)-mediated inactivation of factor (F)Va is greatly enhanced by protein S. For inactivation to occur, a trimolecular complex among FVa, APC, and protein S must form on the phospholipid membrane. However, direct demonstration of complex formation has proven elusive. OBJECTIVES: To elucidate the nature of the phospholipid-dependent interactions among APC, protein S, and FVa. METHODS: We evaluated binding of active site blocked APC to phospholipid-coated magnetic beads in the presence and absence of protein S and/or FVa. The importance of protein S and FV residues were evaluated functionally. RESULTS: Activated protein C alone bound weakly to phospholipids. Protein S mildly enhanced APC binding to phospholipid surfaces, whereas FVa did not. However, FVa together with protein S enhanced APC binding (>14-fold), demonstrating formation of an APC/protein S/FVa complex. C4b binding protein-bound protein S failed to enhance APC binding, agreeing with its reduced APC cofactor function. Protein S variants (E36A and D95A) with reduced APC cofactor function exhibited essentially normal augmentation of APC binding to phospholipids, but diminished APC/protein S/FVa complex formation, suggesting involvement in interactions dependent upon FVa. Similarly, FVaNara (W1920R), an APC-resistant FV variant, also did not efficiently incorporate into the trimolecular complex as efficiently as wild-type FVa. FVa inactivation assays suggested that the mutation impairs its affinity for phospholipid membranes and with protein S within the complex. CONCLUSIONS: FVa plays a central role in the formation of its inactivation complex. Furthermore, membrane proximal interactions among FVa, APC, and protein S are essential for its cofactor function
A Genome-Wide Association Study of the Protein C Anticoagulant Pathway
The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases
Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation
Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing
Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII
Abstract
Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic factor X activation via a specific interaction with factor VIII. In the presence of endothelial cells, the intrinsic activation of factor X was inhibited by protein S with an IC50 value of 0.28 +/- 0.04 mumol/L corresponding to the plasma concentration of protein S. This inhibitory effect was even more pronounced when the intrinsic factor X activation was studied in the presence of activated platelets (IC50 = 0.15 +/- 0.02 mumol/L). When a nonlimiting concentration of phospholipid vesicles was used, the plasma concentration of protein S (300 nmol/L) inhibited the intrinsic factor X activation by 40%. Thrombin-cleaved protein S inhibited the endothelial cell-mediated factor X activation with an IC50 similar to that of native protein S (0.26 +/- 0.02 mumol/L). Protein S in complex with C4b-binding protein inhibited the endothelial cell-mediated factor X activation more potently than protein S alone (IC50 = 0.19 +/- 0.03 mumol/L). Using thrombin activated factor VIII, IC50 values of 0.53 +/- 0.09 mumol/L and 0.46 +/- 0.10 mumol/L were found for native protein S and thrombin-cleaved protein S, respectively. The possible interactions of protein S with factor IXa, phospholipids, and factor VIII were investigated. The enzymatic activity of factor IXa was not affected by protein S, and interaction of protein S with the phospholipid surface could not fully explain the inhibitory effect of protein S on the factor X activation. Using a solid-phase binding assay, we showed a specific, saturable, and reversible binding of protein S to factor VIII with a high affinity. The concentration of protein S where half-maximal binding was reached (B1/2max) was 0.41 +/- 0.06 mumol/L. A similar affinity was found for the interaction of thrombin-cleaved protein S with factor VIII (B1/2max = 0.40 +/- 0.04 mumol/L). The affinity of the complex protein S with C4B-binding protein appeared to be five times higher (B1/2max = 0.07 +/- 0.03 mumol/L). Because the affinities of the interaction of the different forms of protein S with factor VIII correspond to the IC50 values observed for the intrinsic factor X activating complex, the interaction of protein S with factor VIII may explain the inhibitory effect of protein S on the intrinsic factor X activating complex.(ABSTRACT TRUNCATED AT 400 WORDS)</jats:p
Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII
Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic factor X activation via a specific interaction with factor VIII. In the presence of endothelial cells, the intrinsic activation of factor X was inhibited by protein S with an IC50 value of 0.28 +/- 0.04 mumol/L corresponding to the plasma concentration of protein S. This inhibitory effect was even more pronounced when the intrinsic factor X activation was studied in the presence of activated platelets (IC50 = 0.15 +/- 0.02 mumol/L). When a nonlimiting concentration of phospholipid vesicles was used, the plasma concentration of protein S (300 nmol/L) inhibited the intrinsic factor X activation by 40%. Thrombin-cleaved protein S inhibited the endothelial cell-mediated factor X activation with an IC50 similar to that of native protein S (0.26 +/- 0.02 mumol/L). Protein S in complex with C4b-binding protein inhibited the endothelial cell-mediated factor X activation more potently than protein S alone (IC50 = 0.19 +/- 0.03 mumol/L). Using thrombin activated factor VIII, IC50 values of 0.53 +/- 0.09 mumol/L and 0.46 +/- 0.10 mumol/L were found for native protein S and thrombin-cleaved protein S, respectively. The possible interactions of protein S with factor IXa, phospholipids, and factor VIII were investigated. The enzymatic activity of factor IXa was not affected by protein S, and interaction of protein S with the phospholipid surface could not fully explain the inhibitory effect of protein S on the factor X activation. Using a solid-phase binding assay, we showed a specific, saturable, and reversible binding of protein S to factor VIII with a high affinity. The concentration of protein S where half-maximal binding was reached (B1/2max) was 0.41 +/- 0.06 mumol/L. A similar affinity was found for the interaction of thrombin-cleaved protein S with factor VIII (B1/2max = 0.40 +/- 0.04 mumol/L). The affinity of the complex protein S with C4B-binding protein appeared to be five times higher (B1/2max = 0.07 +/- 0.03 mumol/L). Because the affinities of the interaction of the different forms of protein S with factor VIII correspond to the IC50 values observed for the intrinsic factor X activating complex, the interaction of protein S with factor VIII may explain the inhibitory effect of protein S on the intrinsic factor X activating complex.(ABSTRACT TRUNCATED AT 400 WORDS)</jats:p
Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII
Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII
- …
