235 research outputs found
Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection.
Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth surface. Although generally non-pathogenic in the oral environment, they are a frequent cause of infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhesin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific sialoglycan structures recognized can vary from strain to strain. Previous studies have shown that sialoglycan binding is clearly important for aortic valve infections caused by some S. gordonii, but this process did not contribute to the virulence of a strain of S. sanguinis. However, these streptococci can bind to different subsets of sialoglycan structures. Here we generated isogenic strains of S. gordonii that differ only in the type and range of sialoglycan structures to which they adhere and examined whether this rendered them more or less virulent in a rat model of endocarditis. The findings indicate that the recognition of specific sialoglycans can either enhance or diminish pathogenicity. Binding to sialyllactosamine reduces the initial colonization of mechanically-damaged aortic valves, whereas binding to the closely-related trisaccharide sialyl T-antigen promotes higher bacterial densities in valve tissue 72 hours later. A surprising finding was that the initial attachment of streptococci to aortic valves was inversely proportional to the affinity of each strain for platelets, suggesting that binding to platelets circulating in the blood may divert bacteria away from the endocardial surface. Importantly, we found that human and rat platelet GPIbα (the major receptor for S. gordonii and S. sanguinis on platelets) display similar O-glycan structures, comprised mainly of a di-sialylated core 2 hexasaccharide, although the rat GPIbα has a more heterogenous composition of modified sialic acids. The combined results suggest that streptococcal interaction with a minor O-glycan on GPIbα may be more important than the over-all affinity for GPIbα for pathogenic effects
Crystal structure of an assembly intermediate of respiratory Complex II
Flavin is covalently attached to the protein scaffold in ~10% of flavoenzymes. However, the mechanism of covalent modification is unclear, due in part to challenges in stabilizing assembly intermediates. Here, we capture the structure of an assembly intermediate of the Escherichia coli Complex II (quinol:fumarate reductase (FrdABCD)). The structure contains the E. coli FrdA subunit bound to covalent FAD and crosslinked with its assembly factor, SdhE. The structure contains two global conformational changes as compared to prior structures of the mature protein: the rotation of a domain within the FrdA subunit, and the destabilization of two large loops of the FrdA subunit, which may create a tunnel to the active site. We infer a mechanism for covalent flavinylation. As supported by spectroscopic and kinetic analyses, we suggest that SdhE shifts the conformational equilibrium of the FrdA active site to disfavor succinate/fumarate interconversion and enhance covalent flavinylation
Recommended from our members
Behaviour sequelae following acute Kawasaki disease.
BACKGROUND: Kawasaki disease is a systemic vasculitis and may affect cerebral function acutely. The aim of the present study was to measure a number of behaviour and social parameters within a cohort of Kawasaki disease patients. METHODS: Parents of children with past diagnosis of Kawasaki disease were recruited to complete several behaviour screening questionnaires. Sixty five sets of questionnaires relating to the patient cohort received were eligible for inclusion. Two control groups were used, a hospital (HC) control and a sibling control (SC) group. RESULTS: 40% of the Kawasaki disease group showed elevated internalising scores in the clinical or borderline-clinical range. This compared with 18% of hospital controls and 13% of sibling controls. Additionally, the Kawasaki disease (KD) group were shown to be experiencing greater overall total difficulties when compared with the controls (KD 13.7, HC 8.6, SC 8.9). The KD group attained higher behavioural scores within the internalising sub-categories of somatic problems (KD 61, HC 57, SC 54) and withdrawn traits (KD 56, HC 53, SC 51). The KD group were also shown to be suffering more thought problems (KD 57, HC 53, SC 50) compared with the controls. Further difficulties relating to conduct (KD 3.3, HC 1.4) and social interactions (KD 6.7, HC 8.3) are also highlighted for the KD group compared with hospital controls. Positron emission tomograms were performed on nine patients to investigate severe behavioural problems. Three showed minor changes, possibly a resolving cerebral vasculopathy. CONCLUSION: Kawasaki disease can be associated with significant behavioural sequelae. This is an important consideration in the long-term follow up and referral to a clinical psychologist may be necessary in selected patients
Modeling Slope Instability as Shear Rupture Propagation in a Saturated Porous Medium
When a region of intense shear in a slope is much thinner than other relevant geometric lengths, this shear failure may be approximated as localized slip, as in faulting, with strength determined by frictional properties of the sediment and effective stress normal to the failure surface. Peak and residual frictional strengths of submarine sediments indicate critical slope angles well above those of most submarine slopes—in contradiction to abundant failures. Because deformation of sediments is governed by effective stress, processes affecting pore pressures are a means of strength reduction. However, common methods of exami ning slope stability neglect dynamically variable pore pressure during failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive approximate equations governing pore pressure about a slip surface when the adjacent material may deform plastically. In the process we identify an elastic-plastic hydraulic diffusivity with an evolving permeability and plastic storage term analogous to the elastic term of traditional poroelasticity. We also examine their application to a dynamically propagating subsurface rupture and find indications of downslope directivity.Earth and Planetary SciencesEngineering and Applied Science
A Systematic Review of the Usefulness of Glial Fibrillary Acidic Protein for Predicting Acute Intracranial Lesions following Head Trauma
Background: The extensive use of computed tomography (CT) after acute head injury is costly and carries potential iatrogenic risk. This systematic review examined the usefulness of blood-based glial fibrillary acidic protein (GFAP) for predicting acute trauma-related CT-positive intracranial lesions following head trauma. The main objective was to summarize the current evidence on blood-based GFAP as a potential screening test for acute CT-positive intracranial lesions following head trauma.Methods: We screened MEDLINE, EMBASE, Psychlnfo, CINAHL, Web of Science, the Cochrane Database, Scopus, Clinical Trials, OpenGrey, ResearchGate, and the reference lists of eligible publications for original contributions published between January 1980 and January 2017. Eligibility criteria included: (i) population: human head and brain injuries of all severities and ages; (ii) intervention: blood -based GFAP measurement <= 24 h post-injury; and (iii) outcome: acute traumatic lesion on non-contrast head CT <= 24 h post-injury. Three authors completed the publication screening, data extraction, and quality assessment of eligible articles.Results: The initial search identified 4,706 articles, with 51 eligible for subsequent full-text assessment. Twenty-seven articles were ultimately included. Twenty-four (89%) studies reported a positive association between GFAP level and acute trauma-related intracranial lesions on head CT. The area under the receiver operating characteristic curve for GFAP prediction of intracranial pathology ranged from 0.74 to 0.98 indicating good to excellent discrimination. GFAP seemed to discriminate mass lesions and diffuse injury, with mass lesions having significantly higher GFAP levels. There was considerable variability between the measured GFAP averages between studies and assays. No well-designed diagnostic studies with specific GFAP cutoff values predictive of acute traumatic intracranial lesions have been published.Conclusion: Intracranial CT-positive trauma lesions were associated with elevated GFAP levels in the majority of studies. Methodological heterogeneity in GFAP assessments and the lack of well-designed diagnostic studies with commercially validated GFAP platforms hinder the level of evidence, and variability in levels of GFAP with no clearly established cutoff for abnormality limit the clinical usefulness of the biomarker. However, blood based GFAP holds promise as a means of screening for acute traumatic CT-positive lesion following head trauma
Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation
In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments
Climate-mediated diversification of turtles in the Cretaceous
The file attached is the published version of the article
Serum Neurofilament Light Is Elevated Differentially in Older Adults with Uncomplicated Mild Traumatic Brain Injuries
Neurofilament light (NF-L) might have diagnostic and prognostic potential as a blood biomarker for mild traumatic brain injury (mTBI). However, elevated NF-L is associated with several neurological disorders associated with older age, which could confound its usefulness as a traumatic brain injury biomarker. We examined whether NF-L is elevated differentially following uncomplicated mTBI in older adults with pre-injury neurological disorders. In a case-control study, a sample of 118 adults (mean age = 62.3 years, standard deviation [SD] = 22.5, range = 18-100; 52.5% women) presenting to the emergency department (ED) with an uncomplicated mTBI were enrolled. All participants underwent head computed tomography in the ED and showed no macroscopic evidence of injury. The mean time between injury and blood sampling was 8.3 h (median [Md] = 3.5; SD = 13.5; interquartile range [IQR] = 1.9-6.0, range = 0.8-67.4, and 90% collected within 19 h). A sample of 40 orthopedically-injured trauma control subjects recruited from a second ED also were examined. Serum NF-L levels were measured and analyzed using Human Neurology 4-Plex A assay on a HD-1 Single Molecule Array (Simoa) instrument. A high correlation was found between age and NF-L levels in the total mTBI sample (r = 0.80), within the subgroups without pre-injury neurological diseases (r = 0.76) and with pre-injury neurological diseases (r = 0.68), and in the trauma control subjects (r = 0.76). Those with mTBIs and pre-injury neurological conditions had higher NF-L levels than those with no pre-injury neurological conditions (p < 0.001, Cohen's d = 1.01). Older age and pre-injury neurological diseases are associated with elevated serum NF-L levels in patients with head trauma and in orthopedically-injured control subjects
The response of glass window systems to blast loadings: An overview
The failure of glass windows in terrorist bombing attacks and accidental explosion incidents has been cited as one of the major causes to the vast casualties. Many studies have been carried out to investigate the response and vulnerability of glass windows against blast loadings. These include laboratory and field tests that have been carried out to experimentally study glass window performance under explosion scenarios and development of analytical and numerical models to analyze and predict glass window responses. This article reviews literatures on the studies of the response of glass window systems to blast loadings. Over 100 papers and documents that are available in the open literature are reviewed. The background and history of the studies on the topic are also briefed. Understandings about the dynamic material properties of glass and available material models are summarized. Popularly used analysis methods and design standards for monolithic and laminated glass windows are outlined, and their accuracies are discussed. Recent studies including analytical solution, numerical simulation, and experimental investigations on glass window systems are summarized. Mitigation measures for blast-resistant windows are also briefly discussed
- …
