110 research outputs found
Simulated effect of pneumococcal vaccination in the Netherlands on existing rules constructed in a non-vaccinated cohort predicting sequelae after bacterial meningitis
BACKGROUND: Previously two prediction rules identifying children at risk of hearing loss and academic or behavioral limitations after bacterial meningitis were developed. Streptococcus pneumoniae as causative pathogen was an important risk factor in both. Since 2006 Dutch children receive seven-valent conjugate vaccination against S. pneumoniae. The presumed effect of vaccination was simulated by excluding all children infected by S. pneumoniae with the serotypes included in the vaccine, from both previous collected cohorts (between 1990-1995). METHODS: Children infected by one of the vaccine serotypes were excluded from both original cohorts (hearing loss: 70 of 628 children; academic or behavioral limitations: 26 of 182 children). All identified risk factors were included in multivariate logistic regression models. The discriminative ability of both new models was calculated. RESULTS: The same risk factors as in the original models were significant. The discriminative ability of the original hearing loss model was 0.84 and of the new model 0.87. In the academic or behavioral limitations model it was 0.83 and 0.84 respectively. CONCLUSION: It can be assumed that the prediction rules will also be applicable on a vaccinated population. However, vaccination does not provide 100% coverage and evidence is available that serotype replacement will occur. The impact of vaccination on serotype replacement needs to be investigated, and the prediction rules must be validated externally
Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron–sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.Ataxia UK, FARA Australasia and FARA US
Hepatoprotection and neuroprotection induced by low doses of IGF-II in aging rats
<p>Abstract</p> <p>Background</p> <p>GH and IGFs serum levels decline with age. Age-related changes appear to be associated to decreases in these anabolic hormones. We have previously demonstrated that IGF-I replacement therapy improves insulin resistance, lipid metabolism and reduces oxidative damage (in brain and liver) in aging rats. Using the same experimental model, the aim of this work was to study whether the exogenous administration of IGF-II, at low doses, acts analogous to IGF-I in aging rats.</p> <p>Methods</p> <p>Three experimental groups were included in this study: young healthy controls (yCO, 17 weeks old); untreated old rats (O, 103 weeks old); and aging rats treated with IGF-II (O+IGF-II, 2 μg * 100 g body weight<sup>-1 </sup>* day<sup>-1</sup>) for 30 days. Analytical parameters were determined in serum by routine laboratory methods using an autoanalyzer (Cobas Mira; Roche Diagnostic System, Basel, Switzerland). Serum levels of hormones (testosterone, IGF-I and insulin) were assessed by RIA. Serum Total Antioxidant Status was evaluated using a colorimetric assay. Mitochondrial membrane potential was evaluated using rhodamine 123 dye (adding different substrates to determine the different states). ATP synthesis in isolated mitochondria was determined by an enzymatic method.</p> <p>Results</p> <p>Compared with young controls, untreated old rats showed a reduction of IGF-I and testosterone levels with a decrease of serum total antioxidant status (TAS). IGF-II therapy improved serum antioxidant capability without modifying testosterone and IGF-I circulating concentrations. In addition, IGF-II treatment reduced oxidative damage in brain and liver, improving antioxidant enzyme activities and mitochondrial function. IGF-II was also able to reduce cholesterol and triglycerides levels increasing free fatty acids concentrations.</p> <p>Conclusions</p> <p>We demonstrate that low doses of IGF-II induce hepatoprotective, neuroprotective and metabolic effects, improving mitochondrial function, without affecting testosterone and IGF-I levels.</p
A new look at the LTR retrotransposon content of the chicken genome
BACKGROUND: LTR retrotransposons contribute approximately 10 % of the mammalian genome, but it has been previously reported that there is a deficit of these elements in the chicken relative to both mammals and other birds. A novel LTR retrotransposon classification pipeline, LocaTR, was developed and subsequently utilised to re-examine the chicken LTR retrotransposon annotation, and determine if the proposed chicken deficit is biologically accurate or simply a technical artefact. RESULTS: Using LocaTR 3.01 % of the chicken galGal4 genome assembly was annotated as LTR retrotransposon-derived elements (nearly double the previous annotation), including 1,073 that were structurally intact. Element distribution is significantly correlated with chromosome size and is non-random within each chromosome. Elements are significantly depleted within coding regions and enriched in gene sparse areas of the genome. Over 40 % of intact elements are found in clusters, unrelated by age or genera, generally in poorly recombining regions. The transcription of most LTR retrotransposons were suppressed or incomplete, but individual domain and full length retroviral transcripts were produced in some cases, although mostly with regularly interspersed stop codons in all reading frames. Furthermore, RNAseq data from 23 diverse tissues enabled greater characterisation of the co-opted endogenous retrovirus Ovex1. This gene was shown to be expressed ubiquitously but at variable levels across different tissues. LTR retrotransposon content was found to be very variable across the avian lineage and did not correlate with either genome size or phylogenetic position. However, the extent of previous, species-specific LTR retrotransposon annotation appears to be a confounding factor. CONCLUSIONS: Use of the novel LocaTR pipeline has nearly doubled the annotated LTR retrotransposon content of the chicken genome compared to previous estimates. Further analysis has described element distribution, clustering patterns and degree of expression in a variety of adult tissues, as well as in three embryonic stages. This study also enabled better characterisation of the co-opted gamma retroviral envelope gene Ovex1. Additionally, this work suggests that there is no deficit of LTR retrotransposons within the Galliformes relative to other birds, or to mammalian genomes when scaled for the three-fold difference in genome size
Interaction between Ammonium Toxicity and Green Tide Development Over Seagrass Meadows:A Laboratory Study
Eutrophication affects seagrasses negatively by increasing light attenuation through stimulation of biomass of fast-growing, bloom-forming algae and because high concentrations of ammonium in the water can be toxic to higher plants. We hypothesized nevertheless, that moderate amounts of nitrophilic macroalgae that coexists with seagrasses under eutrophic conditions, can alleviate the harmful effects of eutrophication on seagrasses by reducing ammonium concentrations in the seawater to non-toxic levels because such algae have a very large capacity to take up inorganic nutrients. We studied therefore how combinations of different ammonium concentrations (0, 25 and 50 μM) and different standing stocks of macroalgae (i.e. 0, 1 and 6 layers of Ulva sp.) affected survival, growth and net production of the seagrass Zostera noltei. In the absence of Ulva sp., increasing ammonium concentrations had a negative influence on the performance of Z. noltei. The presence of Ulva sp. without ammonium supply had a similar, but slightly smaller, negative effect on seagrass fitness due to light attenuation. When ammonium enrichment was combined with presence of Ulva sp., Ulva sp. ameliorated some of negative effects caused by high ammonium availability although Ulva sp. lowered the availability of light. Benthic microalgae, which increased in biomass during the experiment, seemed to play a similar role as Ulva sp.--they contributed to remove ammonium from the water, and thus, aided to keep the ammonium concentrations experienced by Z. noltei at relatively non-toxic levels. Our findings show that moderate amounts of drift macroalgae, eventually combined with increasing stocks of benthic microalgae, may aid seagrasses to alleviate toxic effects of ammonium under eutrophic conditions, which highlights the importance of high functional diversity for ecosystem resistance to anthropogenic disturbance
Effects of converting natural forests to coniferous plantations on fruit and seed production and mating patterns in wild cherry trees
The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review
BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution
Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data" (2019, ApJ, 879, 10)
This is a correction for 2019 ApJ 879 1
All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
- …
