252 research outputs found
Recommended from our members
Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy.
MotivationMultiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia.ResultsWe performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified.Availability and implementationDatasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/.Supplementary informationSupplementary data are available at Bioinformatics online
Conscious monitoring and control (reinvestment) in surgical performance under pressure.
Research on intraoperative stressors has focused on external factors without considering individual differences in the ability to cope with stress. One individual difference that is implicated in adverse effects of stress on performance is "reinvestment," the propensity for conscious monitoring and control of movements. The aim of this study was to examine the impact of reinvestment on laparoscopic performance under time pressure
Coupled discrete-continuum method for studying load-deformation of a stone column reinforces rail track embankments
Stone columns are being increasingly used as a cost-effective and environmentally friendly method for reinforcing soft soils of rail track embankments. Deformation behavior of stone columns reinforced soft clay has been the subject of an extensive number of experimental and modelling studies during last decades. A continuum-based numerical method provides valuable insights into the settlement, lateral deformation, stress and strain-rate dependent behavior of stone column at macroscopic scale. However, due to the discrete nature of stone columns, which are comprised of granular aggregates, they cannot be properly modelled by the continuum methods. This paper presents a novel coupling model of discrete element method (DEM) and finite difference method (FDM) to investigate the load-deformation behavior of stone columns considering micromechanical analysis. In the coupled discrete-continuum model, the soft soil domain under track embankment is modelled by the continuum method using FLAC and stone column is modelled by the discrete element method using PFC2D. A force-displacement transmission mechanism is introduced to achieve the interaction of both domains in which the DEM transfers forces and moment to the FDM and then the FDM updates displacements back to the DEM. The predicted load-deformation results are in good agreement with the data measured experimentally; indicating that the proposed coupling discrete-continuum model could capture the deformation behavior of stone column reinforced soft soils
Dependence of nucleosome mechanical stability on DNA mismatches
The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes
Decreased olfactory discrimination is associated with impulsivity in healthy volunteers
In clinical populations, olfactory abilities parallel executive function, implicating shared
neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship
between olfaction and personality traits or certain cognitive and behavioural characteristics remains
unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity
in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative
assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each
participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed
a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling
Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning
impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection
threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend
clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive
tendencies within the healthy population. In particular, the relationship between olfactory abilities and
behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural
networks involved in both processes. These fndings may usefully inform the stratifcation of people at
risk of impulse-control-related problems and support planning early clinical interventions
Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also
between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles,
while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi
apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics
of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main
routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder
content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups
contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some
of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more
disordered (,23%) than the other two, COPI (,9%) and COPII (,8%). We show that this structural phenomenon enhances
the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other
two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its
prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest
capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific
functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for
protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of
structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of
evolutionary adaptability in the three routes
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL
Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution
Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population
Removing ammonium from water using modified corncob-biochar
© 2016 Elsevier B.V. Ammonium pollution in groundwater and surface water is of major concern in many parts of the world due to the danger it poses to the environment and people's health. This study focuses on the development of a low cost adsorbent, specifically a modified biochar prepared from corncob. Evaluated here is the efficiency of this new material for removing ammonium from synthetic water (ammonium concentration from 10 to 100 mg/L). The characteristics of the modified biochar were determined by Brunauer-Emmett-Teller (BET) test, Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). It was found that ammonium adsorption on modified biochar strongly depended on pH. Adsorption kinetics of NH4+-N using modified biochar followed the pseudo-second order kinetic model. Both Langmuir and Sips adsorption isotherm models could simulate well the adsorption behavior of ammonium on modificated biochar. The highest adsorption capacity of 22.6 mg NH4+-N/g modified biochar was obtained when the biochar was modified by soaking it in HNO3 6 M and NaOH 0.3 M for 8 h and 24 h, respectively. The high adsorption capacity of the modified biochar suggested that it is a promising adsorbent for NH4+-N remediation from water
Achievable rates optimization for broadcast channels using finite size constellations under transmission constraints
- …
