22 research outputs found

    Coexpression of epidermal growth factor receptor with related factors is associated with a poor prognosis in non-small-cell lung cancer

    Get PDF
    The epidermal growth factor receptor (EGFR) is commonly expressed in non-small-cell lung cancer (NSCLC) and promotes a host of mechanisms involved in tumorigenesis. However, EGFR expression does not reliably predict prognosis or response to EGFR-targeted therapies. The data from two previous studies of a series of 181 consecutive surgically resected stage I-IIIA NSCLC patients who had survived in excess of 60 days were explored. Of these patients, tissue was available for evaluation of EGFR in 179 patients, carbonic anhydrase (CA) IX in 177 patients and matrix metalloproteinase-9 (MMP-9) in 169 patients. We have previously reported an association between EGFR expression and MMP-9 expression. We have also reported that MMP-9 (P=0.001) and perinuclear (p)CA IX (P=0.03) but not EGFR expression were associated with a poor prognosis. Perinuclear CA IX expression was also associated with EGFR expression (P<0.001). Multivariate analysis demonstrated that coexpression of MMP-9 with EGFR conferred a worse prognosis than the expression of MMP-9 alone (P<0.001) and coexpression of EGFR and pCA IX conferred a worse prognosis than pCA IX alone (P=0.05). A model was then developed where the study population was divided into three groups: group 1 had expression of EGFR without coexpression of MMP-9 or pCA IX (number=21); group 2 had no expression of EGFR (number=75); and group 3 had coexpression of EGFR with pCA IX or MMP-9 or both (number=70). Group 3 had a worse prognosis than either groups 1 or 2 (P=0.0003 and 0.027, respectively) and group 1 had a better prognosis than group 2 (P=0.036). These data identify two cohorts of EGFR-positive patients with diametrically opposite prognoses. The group expressing either EGFR and or both MMP-9 and pCA IX may identify a group of patients with activated EGFR, which is of clinical relevance with the advent of EGFR-targeted therapies. © 2004 Cancer Research UK

    Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression <it>in vivo.</it></p> <p>Methods</p> <p>Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated.</p> <p>Results</p> <p>We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression <it>in vitro</it>, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na<sup>+</sup>-K<sup>+ </sup>ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues.</p> <p>Conclusions</p> <p>This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase was involved in hypoxic inhibition of tumor progression. The results from this study provide new insights into the role of hypoxia in tumor progression and therapeutic strategies for cancer treatment.</p

    Evaluation of current methods to detect the mutations of epidermal growth factor receptor in non-small cell lung cancer patients

    Get PDF
    <p>Abstract</p> <p>Many different methods were developed to detect commonly known mutations and to screen new mutations of the epidermal growth factor receptor in non-small cell lung cancer patients. Some of these methods are so sensitive as to be able to detect even one epidermal growth factor receptor mutant tumor cell among up to 1000–2000 normal cells. We have considered current methods chronologically reported to detect mutations in epidermal growth factor receptor in patients with non-small cell lung cancer. We also gave a short preview of their significance for routine clinical works. A Pub Med literature search was performed in order to demonstrate what methods are mostly used in mutation detection and to show their distribution through the last 10 years.</p

    Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice

    Get PDF
    We report the restoration of euglycaemia in chemically induced diabetic C57BL/6 mice and spontaneously diabetic Non Obese Diabetic (NOD) mice by intravenous systemic administration of a single-stranded adeno-associated virus (ssAAV2/8) codon optimised (co) vector encoding furin cleavable human proinsulin under a liver-specific promoter. There were no immunological barriers to efficacy of insulin gene therapy in chemically induced C57BL/6 mice, which enjoyed long-lasting correction of hyperglycaemia after therapy, up to 250 days. Euglycaemia was also restored in spontaneously diabetic NOD mice, although these mice required a 7–10-fold higher dose of vector to achieve similar efficacy as the C57BL/6 mice and the immunodeficient NODscid mice. We detected CD8+ T cell reactivity to insulin and mild inflammatory infiltration in the livers of gene therapy recipient NOD mice, neither of which were observed in the treated C57BL/6 mice. Efficacy of the gene therapy in NOD mice was partially improved by targeting the immune system with anti-CD4 antibody treatment, while transfer of NOD mouse AAV2/8-reactive serum to recipients prevented successful restoration of euglycaemia in AAV2/8-HLP-hINSco-treated NODscid mice. Our data indicate that both immune cells and antibodies form a barrier to successful restoration of euglycaemia in autoimmune diabetic recipient mice with insulin gene therapy, but that this barrier can be overcome by increasing the dose of vector and by suppressing immune responses
    corecore