85 research outputs found
The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions
The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities
Molecular bases of diabetic nephropathy
The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.O principal determinante da nefropatia diabética é a hiperglicemia, mas hipertensão e fatores genéticos também estão envolvidos. O glomérulo é o foco de lesão, onde proliferação celular mesangial e produção excessiva de matriz extracelular decorrem do aumento da glicose intracelular, por excesso de glicose extracelular e hiperexpressão de GLUT1. Seguem-se aumento do fluxo pela via dos polióis, estresse oxidativo intracelular, produção intracelular aumentada de produtos avançados da glicação não enzimática (AGEs), ativação da via da PKC, aumento da atividade da via das hexosaminas e ativação de TGF-beta1. Altas concentrações de glicose também aumentam angiotensina II (AII) nas células mesangiais por aumento intracelular da atividade da renina (ações intrácrinas, mediando efeitos proliferativos e inflamatórios diretamente). Portanto, glicose e AII exercem efeitos proliferativos celulares e de matriz extracelular nas células mesangiais, utilizando vias de transdução de sinais semelhantes, que levam a aumento de TGF-beta1. Nesse estudo são revisadas as vias que sinalizam os efeitos da glicose e AII nas células mesangiais em causar os eventos-chaves relacionados à gênese da glomerulopatia diabética. As alterações das vias de sinalização implicadas na glomerulopatia, aqui revisadas, suportam dados de estudos observacionais/ensaios clínicos, onde controle metabólico e anti-hipertensivo, especificamente com inibidores do sistema renina-angiotensina, têm-se mostrado importantes - e aditivos - na prevenção do início e progressão da nefropatia. Novas estratégias terapêuticas dirigidas aos eventos intracelulares descritos deverão futuramente promover benefício adicional.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)HC Instituto do Coração Unidade de HipertensãoUSP FMUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Laboratório de NefrologiaFundação Universitária de Cardiologia Instituto de Cardiologia Laboratório de Cardiologia Molecular e CelularUNIFESP, EPM, Laboratório de NefrologiaSciEL
Technology-assisted education in graduate medical education: a review of the literature
Studies on computer-aided instruction and web-based learning have left many questions unanswered about the most effective use of technology-assisted education in graduate medical education
Factors associated with psychotropic drug use among community-dwelling older persons: A review of empirical studies
BACKGROUND: In the many descriptive studies on prescribed psychotropic drug use by community-dwelling older persons, several sociodemographic and other factors associated with drug use receive inconsistent support. METHOD: Empirical reports with data on at least benzodiazepine or antidepressant drug use in samples of older persons published between 1990 and 2001 (n = 32) were identified from major databases and analyzed to determine which factors are most frequently associated with psychotropic drug use in multivariate analyses. Methodological aspects were also examined. RESULTS: Most reports used probability samples of users and non-users and employed cross-sectional designs. Among variables considered in 5 or more reports, race, proximity to health centers, medical consultations, sleep complaints, and health perception were virtually always associated to drug use. Gender, mental health, and physical health status were associated in about two-thirds of reports. Associations with age, marital status, medication coverage, socioeconomic status, and social support were usually not observed. CONCLUSIONS: The large variety of methods to operationalize drug use, mental health status, and social support probably affected the magnitude of observed relationships. Employing longitudinal designs and distinguishing short-term from long-term use, focusing on samples of drug users exclusively, defining drug use and drug classes more uniformly, and utilizing measures of psychological well-being rather than only of distress, might clarify the nature of observed associations and the direction of causality. Few studies tested specific hypotheses. Most studies focused on individual characteristics of respondents, neglecting the potential contribution of health care professionals to the phenomenon of psychotropic drug use among seniors
MRI/PET Brain Imaging
Multimodal brain imaging has become an established clinical and research tool for diagnosis and disease progression of brain disorders. Among available imaging modalities, magnetic resonance imaging (MRI) and positron-emission tomography (PET) can provide a wide spectrum of data for the in vivo mapping of neurobiological functions and brain morphology while demonstrating to relationships between behavioral and neurobiological factors. Since MRI mostly uses endogenous contrast mechanisms to visualize and quantify tissue characteristics, optimal sequence design is essential for the diagnostic information of MRI. On the other hand, PET imaging is always based on the exogenous contrast of an injected PET tracer. Therefore, characteristics of the PET tracer determine the quantitative and diagnostic potential of PET. This chapter will focus on both of these modalities and shortly discuss the potential of multimodal or hybrid MR/PET imaging. We will not cover MR spectroscopy nor specific applications of H215O PET since this will be discussed in other chapters of this book.</p
Assessment of interobserver agreement and use of selected magnetic resonance imaging variables for differentiation of acute noncompressive nucleus pulposus extrusion and ischemic myelopathy in dogs
Enhanced insulin secretion from engineered 3T3-L1 preadipocytes by induction of cellular differentiation
- …
