54 research outputs found

    Inflexible Youngsters: Psychological and Psychopathological Correlates of the Avoidance and Fusion Questionnaire for Youths in Nonclinical Dutch Adolescents

    Get PDF
    The present study examined psychological and psychopathological correlates of psychological inflexibility as measured by the Avoidance and Fusion Questionnaire for Youth (AFQ-Y) in two independent samples of nonclinical Dutch adolescents aged between 12 and 18 years (Ns being 184 and 157). Participants completed a survey containing the AFQ-Y and scales assessing mindfulness, thought suppression, self-compassion, self-worth, self-efficacy, and internalizing/externalizing symptoms. In both samples, the AFQ-Y was found to be a reliable measure of psychological inflexibility that correlated in a theoretically meaningful way with other psychological constructs. Most importantly, AFQ-Y scores correlated positively with internalizing and externalizing symptoms, and in most cases, these associations remained significant when controlling for other measures. These findings suggest that psychological inflexibility is an important factor in youth psychopathology that needs to be further investigated in future research

    Does Genetic Diversity Predict Health in Humans?

    Get PDF
    Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC), has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d2) at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d2) at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations

    Insights into the Complex Associations Between MHC Class II DRB Polymorphism and Multiple Gastrointestinal Parasite Infestations in the Striped Mouse

    Get PDF
    Differences in host susceptibility to different parasite types are largely based on the degree of matching between immune genes and parasite antigens. Specifically the variable genes of the major histocompatibility complex (MHC) play a major role in the defence of parasites. However, underlying genetic mechanisms in wild populations are still not well understood because there is a lack of studies which deal with multiple parasite infections and their competition within. To gain insights into these complex associations, we implemented the full record of gastrointestinal nematodes from 439 genotyped individuals of the striped mouse, Rhabdomys pumilio. We used two different multivariate approaches to test for associations between MHC class II DRB genotype and multiple nematodes with regard to the main pathogen-driven selection hypotheses maintaining MHC diversity and parasite species-specific co-evolutionary effects. The former includes investigations of a ‘heterozygote advantage’, or its specific form a ‘divergent-allele advantage’ caused by highly dissimilar alleles as well as possible effects of specific MHC-alleles selected by a ‘rare allele advantage’ ( = negative ‘frequency-dependent selection’). A combination of generalized linear mixed models (GLMMs) and co-inertia (COIA) analyses made it possible to consider multiple parasite species despite the risk of type I errors on the population and on the individual level. We could not find any evidence for a ‘heterozygote’ advantage but support for ‘divergent-allele’ advantage and infection intensity. In addition, both approaches demonstrated high concordance of positive as well as negative associations between specific MHC alleles and certain parasite species. Furthermore, certain MHC alleles were associated with more than one parasite species, suggesting a many-to-many gene-parasite co-evolution. The most frequent allele Rhpu-DRB*38 revealed a pleiotropic effect, involving three nematode species. Our study demonstrates the co-existence of specialist and generalist MHC alleles in terms of parasite detection which may be an important feature in the maintenance of MHC polymorphism

    CCAAT/enhancer binding proteins in normal mammary development and breast cancer

    Get PDF
    CCAAT/enhancer binding proteins (C/EBPs) are a family of leucine zipper, transcription factors that bind to DNA as homodimers and heterodimers. They regulate cellular proliferation, differentiation and apoptosis in the mammary gland. Multiple protein isoforms, including truncated, dominant negatives, are generated by translation of the C/EBPβ transcript or via proteolytic cleavage of the full-length C/EBPβ protein. Gene deletion of individual C/EBP family members has demonstrated an essential role for C/EBPβ in normal mammary development, while transgenic and overexpression studies provide evidence that the dominant-negative C/EBPβ-liver-enriched inhibitory protein isoform induces proliferation in mammary epithelial cells. Mounting evidence suggests that alterations in the ratio of the C/EBPβ-liver-enriched inhibitory protein isoform and the C/EBPβ-liver-enriched activating protein isoform may play a role in the development of breast cancer. This review will consequently focus on C/EBP actions in normal mammary development and on the emerging data that supports a role in breast cancer

    Distamycin A Inhibits HMGA1-Binding to the P-Selectin Promoter and Attenuates Lung and Liver Inflammation during Murine Endotoxemia

    Get PDF
    Background: The architectural transcription factor High Mobility Group-A1 (HMGA1) binds to the minor groove of AT-rich DNA and forms transcription factor complexes (“enhanceosomes”) that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI). AT-rich regions of DNA surround transcription factor binding sites in genes critical for the inflammatory response. Minor groove binding drugs (MGBs), such as Distamycin A (Dist A), interfere with AT-rich region DNA binding in a sequence and conformation-specific manner, and HMGA1 is one of the few transcription factors whose binding is inhibited by MGBs. Objectives: To determine whether MGBs exert beneficial effects during endotoxemia through attenuating tissue inflammation via interfering with HMGA1-DNA binding and modulating expression of adhesion molecules. Methodology/Principal Findings: Administration of Dist A significantly decreased lung and liver inflammation during murine endotoxemia. In intravital microscopy studies, Dist A attenuated neutrophil-endothelial interactions in vivo following an inflammatory stimulus. Endotoxin induction of P-selectin expression in lung and liver tissue and promoter activity in endothelial cells was significantly reduced by Dist A, while E-selectin induction was not significantly affected. Moreover, Dist A disrupted formation of an inducible complex containing NF-κB that binds an AT-rich region of the P-selectin promoter. Transfection studies demonstrated a critical role for HMGA1 in facilitating cytokine and NF-κB induction of P-selectin promoter activity, and Dist A inhibited binding of HMGA1 to this AT-rich region of the P-selectin promoter in vivo. Conclusions/Significance: We describe a novel targeted approach in modulating lung and liver inflammation in vivo during murine endotoxemia through decreasing binding of HMGA1 to a distinct AT-rich region of the P-selectin promoter. These studies highlight the ability of MGBs to function as molecular tools for dissecting transcriptional mechanisms in vivo and suggest alternative treatment approaches for critical illness

    Large-scale manufacture of ZnO nanorods by flame spray pyrolysis

    No full text
    Large quantities of ZnO nanorods (>3 kg/h throughput) were produced in the gas-phase by flame spray pyrolysis (FSP) of a zinc nitrate-ethanol precursor solution without employing any catalysts or dopants. The nanorods with diameters of 20-30 nm and aspect ratios as high as seven were collected as a dry powder. Several rods self-aligned by forming junctions at the basal planes, while some even assembled into tetrapods. The aspect ratio of the nanorods could be controlled by the concentration of the Zn ions in the starting precursor solution, its delivery rate, and the oxygen flow into the reactor. To the best of our knowledge, this is the first time that synthesis of high aspect ratio ZnO nanorods by FSP is reported. Previous lab-scale experiments always yielded rather spherical albeit slightly elongated nanoparticles unless dopants were added. Such a product powder was obtained here when the ethanol in the precursor solution was replaced by methanol at otherwise constant process conditions. This is attributed to different temperature-time histories of the particles in the flame based on which a mechanism for ZnO nanorod formation in spray flames is proposed

    From rods to sheets in a flash

    No full text

    Efficacy of MEK inhibition in a recurrent malignant peripheral nerve sheath tumor

    Get PDF
    The prognosis of recurrent malignant peripheral nerve sheath tumors (MPNST) is dismal, with surgical resection being the only definitive salvage therapy. Treatment with chemoradiation approaches has not significantly improved patient outcomes. Similarly, trials of therapies targeting MPNST genomic drivers have thus far been unsuccessful. Improved understanding of the molecular pathogenesis of MPNST indicates frequent activation of the mitogen-activated protein kinase (MAPK) cell signaling pathway. MEK inhibitors have shown activity in preclinical studies; however, their clinical efficacy has not been reported to date. We describe here a case of sustained complete response to MEK inhibition in an adolescent patient with a recurrent metastatic MPNST with multiple alterations in the MAPK pathway, guided by a precision oncology approach
    corecore