73 research outputs found
Predictors for neonatal death in the rural areas of Shaanxi Province of Northwestern China: a cross-sectional study
Background
Almost all (99%) neonatal deaths arise in low-income and middle-income countries. Approximately 450 new-born children die every hour, which is mainly from preventable causes. There has been increased recognition of the need for these countries to implement public health interventions that specifically target neonatal deaths. The purpose of this paper is to identify the predictors of neonatal death in Type 4 rural (poorest) counties in Shaanxi Province of northwestern China.
Methods
A cross-sectional study was conducted in Shaanxi Province, China. A single-stage survey design was identified to estimate standard errors. Because of concern about the complex sample design, the data were analysed using multivariate logistic regression analysis. Socioeconomic and maternal health service utilization factors were added into the model.
Results
During the study period, a total of 4750 women who delivered in the past three years were randomly selected for interview in the five counties. There were 4880 live births and 54 neonatal deaths identified. In the multiple logistic regression, the odds of neonatal death was significantly higher for multiparous women (OR = 2.77; 95% CI: 1.34, 5.70) and women who did not receive antennal health care in the first trimester of pregnancy (OR = 2.49; 95% CI: 1.41, 4.40). Women who gave birth in a county-level hospital (OR = 0.18; 95% CI: 0.04, 0.86) and had junior high school or higher education level (OR = 0.20; 95% CI: 0.05, 0.84) were significantly protected from neonatal death.
Conclusions
Public health interventions directed at reducing neonatal death should address the socioeconomic factors and maternal health service utilization, which significantly influence neonatal mortality in rural China. Multipara, low educational level of the women, availability of prenatal visits in the first trimester of pregnancy and hospital delivery should be considered when planning the interventions to reduce the neonatal mortality in rural areas
Prostate cancer outcome in Burkina Faso
<p>Abstract</p> <p>Introduction</p> <p>African-American black men race is one of non-modifiable risk factors confirmed for prostate cancer. Many studies have been done in USA among African- American population to evaluate prostate cancer disparities. Compared to the USA very few data are available for prostate cancer in Sub-Saharan African countries. The objective of this study was to describe incident prostate cancer (PC) diagnosis characteristics in Burkina Faso (West Africa).</p> <p>Methods</p> <p>We performed a prospective non randomized patient’s cohort study of new prostate cancer cases diagnosed by histological analysis of transrectal prostate biopsies in Burkina Faso. Study participants included 166 patients recruited at the urology division of the university hospital of Ouagadougou. Age of the patients, clinical symptoms, digital rectal examination (DRE) result, serum prostate-specific antigen (PSA) level, histological characteristics and TNM classification were taking in account in this study.</p> <p>Results</p> <p>166 transrectal prostate biopsies (TRPB) were performed based on high PSA level or abnormal DRE. The prostate cancer rate on those TRPB was 63, 8 % (n=106). The mean age of the patients was 71, 5 years (52 to 86). Urinary retention was the first clinical patterns of reference in our institution (55, 7 %, n = 59). Most patients, 56, 6 % (n = 60) had a serum PSA level over than 100 ng/ml. All the patients had adenocarcinoma on histological study of prostate biopsy cores. The majority of cases (54, 7 % n = 58) had Gleason score equal or higher than 7.</p> <p>Conclusion</p> <p>Prostate cancer is diagnosed at later stages in our country. Very high serum PSA level and poorly differentiated tumors are the two major characteristics of PC at the time of diagnosis.</p
Effects of cognac on coronary flow reserve and plasma antioxidant status in healthy young men
<p>Abstract</p> <p>Background</p> <p>The cardioprotective effects of certain alcoholic beverages are partly related to their polyphenol content, which may improve the vasodilatory reactivity of arteries. Effect of cognac on coronary circulation, however, remains unknown. The purpose of this randomized controlled cross-over study was to determine whether moderate doses of cognac improve coronary reactivity as assessed with cold pressor testing (CPT) and coronary flow reserve (CFR) measument.</p> <p>Methods</p> <p>Study group consisted of 23 subjects. Coronary flow velocity and epicardial diameter was assessed using transthoracic echocardiography at rest, during CPT and adenosine infusion-derived CFR measurements before drinking, after a moderate (1.2 ± 0.1 dl) and an escalating high dose (total amount 2.4 ± 0.3 dl) of cognac. To explore the bioavailability of antioxidants, the antioxidant contents of cognac was measured and the absorption from the digestive tract was verified by plasma antioxidant capacity determination.</p> <p>Results</p> <p>Serum alcohol levels increased to 1.2 ± 0.2‰ and plasma antioxidant capacity from 301 ± 43.9 μmol/l to 320 ± 25.0 μmol/l by 7.6 ± 11.8%, (p = 0.01) after high doses of cognac. There was no significant change in flow velocity during CPT after cognac ingestion compared to control day. CFR was 4.4 ± 0.8, 4.1 ± 0.9 (p = NS), and 4.5 ± 1.2 (p = NS) before drinking and after moderate and high doses on cognac day, and 4.5 ± 1.4, and 4.0 ± 1.2 (p = NS) on control day.</p> <p>Conclusion</p> <p>Cognac increased plasma antioxidant capacity, but it had no effect on coronary circulation in healthy young men.</p> <p>Trial Registration</p> <p>NCT00330213</p
Antigen-Specific B Memory Cell Responses to Plasmodium falciparum Malaria Antigens and Schistosoma haematobium Antigens in Co-Infected Malian Children
Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP) Malian children have age-dependent protection from malaria compared to matched schistosomiasis-negative (SN) children. Evidence of durable immunologic memory to malaria antigens is conflicting, particularly in young children and the effect of concomitant schistomiasis upon acquisition of memory is unknown. We examined antigen-specific B memory cell (MBC) frequencies (expressed as percentage of total number of IgG-secreting cells) in 84 Malian children aged 4–14 to malaria blood-stage antigens, apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP-1) and to schistosomal antigens, Soluble Worm Antigenic Preparation (SWAP) and Schistosoma Egg Antigen (SEA), at a time point during the malaria transmission season and a follow-up dry season visit. We demonstrate, for the first time, MBC responses to S. haematobium antigens in Malian children with urinary egg excretion and provide evidence of seasonal acquisition of immunologic memory, age-associated differences in MBC acquisition, and correlation with circulating S. haematobium antibody. Moreover, the presence of a parasitic co-infection resulted in older children, aged 9–14 years, with underlying S. haematobium infection having significantly more MBC response to malaria antigens (AMA1 and MSP1) than their age-matched SN counterparts. We conclude that detectable MBC response can be measured against both malaria and schistosomal antigens and that the presence of S. haematobium may be associated with enhanced MBC induction in an age-specific manner
Reduced T Regulatory Cell Response during Acute Plasmodium falciparum Infection in Malian Children Co-Infected with Schistosoma haematobium
Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4-8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria
Non-variant specific antibody responses to the C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-119) in Iranians exposed to unstable malaria transmission
<p>Abstract</p> <p>Background</p> <p>The C-terminal region of <it>Plasmodium falciparum </it>merozoite surface protein-1 (PfMSP-1<sub>19</sub>) is a leading malaria vaccine candidate antigen. However, the existence of different variants of this antigen can limit efficacy of the vaccine development based on this protein. Therefore, in this study, the main objective was to define the frequency of PfMSP-1<sub>19 </sub>haplotypes in malaria hypoendemic region of Iran and also to analyse cross-reactive and/or variant-specific antibody responses to four PfMSP-1<sub>19 </sub>variant forms.</p> <p>Methods</p> <p>The PfMSP-1<sub>19 </sub>was genotyped in 50 infected subjects with <it>P. falciparum </it>collected during 2006-2008. Four GST-PfMSP-1<sub>19 </sub>variants (E/TSR/L, E/TSG/L, E/KNG/F and Q/KNG/L) were produced in <it>Escherichia coli </it>and naturally occurring IgG antibody to these proteins was evaluated in malaria patients' sera (n = 50) using ELISA. To determine the cross-reactivity of antibodies against each PfMSP-1<sub>19 </sub>variant in <it>P. falciparum-</it>infected human sera, an antibody depletion assay was performed in eleven corresponding patients' sera.</p> <p>Results</p> <p>Sequence data of the PfMSP-1<sub>19 </sub>revealed five variant forms in which the haplotypes Q/KNG/L and Q/KNG/F were predominant types and the second most frequent haplotype was E/KNG/F. In addition, the prevalence of IgG antibodies to all four PfMSP-1<sub>19 </sub>variant forms was equal and high (84%) among the studied patients' sera. Immunodepletion results showed that in Iranian malaria patients, Q/KNG/L variant could induce not only cross-reactive antibody responses to other PfMSP-1<sub>19 </sub>variants, but also could induce some specific antibodies that are not able to recognize the E/TSG/L or E/TSR/L variant forms.</p> <p>Conclusion</p> <p>The present findings demonstrated the presence of non-variant specific antibodies to PfMSP-1<sub>19 </sub>in Iranian falciparum malaria patients. This data suggests that polymorphism in PfMSP-1<sub>19 </sub>is less important and one variant of this antigen, particularly Q/KNG/L, may be sufficient to be included in PfMSP-1<sub>19</sub>-based vaccine.</p
Impact of Schistosome Infection on Plasmodium falciparum Malariometric Indices and Immune Correlates in School Age Children in Burma Valley, Zimbabwe
A group of children aged 6–17 years was recruited and followed up for 12 months to study the impact of schistosome infection on malaria parasite prevalence, density, distribution and anemia. Levels of cytokines, malaria specific antibodies in plasma and parasite growth inhibition capacities were assessed. Baseline results suggested an increased prevalence of malaria parasites in children co-infected with schistosomiasis (31%) compared to children infected with malaria only (25%) (p = 0.064). Moreover, children co-infected with schistosomes and malaria had higher sexual stage geometric mean malaria parasite density (189 gametocytes/µl) than children infected with malaria only (73/µl gametocytes) (p = 0.043). In addition, a larger percentage of co-infected children (57%) had gametocytes as observed by microscopy compared to the malaria only infected children (36%) (p = 0.06). There was no difference between the two groups in terms of the prevalence of anemia, which was approximately 64% in both groups (p = 0.9). Plasma from malaria-infected children exhibited higher malaria antibody activity compared to the controls (p = 0.001) but was not different between malaria and schistosome plus malaria infected groups (p = 0.44) and malaria parasite growth inhibition activity at baseline was higher in the malaria-only infected group of children than in the co-infected group though not reaching statistical significance (p = 0.5). Higher prevalence and higher mean gametocyte density in the peripheral blood may have implications in malaria transmission dynamics during co-infection with helminths
Effect of treating Schistosoma haematobium infection on Plasmodium falciparum-specific antibody responses
<p>Abstract</p> <p>Background</p> <p>The overlapping geographical and socio-economic distribution of malaria and helminth infection has led to several studies investigating the immunological and pathological interactions of these parasites. This study focuses on the effect of treating schistosome infections on natural human immune responses directed against plasmodia merozoite surface proteins MSP-1 (DPKMWR, MSP1<sub>19</sub>), and MSP-2 (CH150 and Dd2) which are potential vaccine candidates as well as crude malaria (schizont) and schistosome (whole worm homogenate) proteins.</p> <p>Methods</p> <p>IgG1 and IgG3 antibody responses directed against <it>Schistosoma haematobium </it>crude adult worm antigen (WWH) and <it>Plasmodium falciparum </it>antigens (merozoite surface proteins 1/2 and schizont extract), were measured by enzyme linked immunosorbent assay (ELISA) in 117 Zimbabweans (6–18 years old) exposed to <it>S. haematobium </it>and <it>P. falciparum </it>infection. These responses were measured before and after anti-helminth treatment with praziquantel to determine the effects of treatment on anti-plasmodial/schistosome responses.</p> <p>Results</p> <p>There were no significant associations between antibody responses (IgG1/IgG3) directed against <it>P. falciparum </it>and schistosomes before treatment. Six weeks after schistosome treatment there were significant changes in levels of IgG1 directed against schistosome crude antigens, plasmodia crude antigens, MSP-1<sub>19</sub>, MSP-2 (Dd2), and in IgG3 directed against MSP-1<sub>19</sub>. However, only changes in anti-schistosome IgG1 were attributable to the anti-helminth treatment.</p> <p>Conclusion</p> <p>There was no association between anti-<it>P. falciparum </it>and <it>S. haematobium antibody </it>responses in this population and <it>a</it>nti-helminth treatment affected only anti-schistosome responses and not responses against plasmodia crude antigens or MSP-1 and -2 vaccine candidates.</p
Evaluation of antibody response to Plasmodium falciparum in children according to exposure of Anopheles gambiae s.l or Anopheles funestus vectors
<p>Abstract</p> <p>Background</p> <p>In sub-Saharan areas, malaria transmission was mainly ensured by <it>Anopheles. gambiae </it>s.l. and <it>Anopheles. funestus </it>vectors. The immune response status to <it>Plasmodium falciparum </it>was evaluated in children living in two villages where malaria transmission was ensured by dissimilar species of <it>Anopheles </it>vectors (<it>An. funestus vs An. gambiae </it>s.l.).</p> <p>Methods</p> <p>A multi-disciplinary study was performed in villages located in Northern Senegal. Two villages were selected: Mboula village where transmission is strictly ensured by <it>An. gambiae </it>s.l. and Gankette Balla village which is exposed to several <it>Anopheles </it>species but where <it>An. funestus </it>is the only infected vector found. In each village, a cohort of 150 children aged from one to nine years was followed during one year and IgG response directed to schizont extract was determined by ELISA.</p> <p>Results</p> <p>Similar results of specific IgG responses according to age and <it>P. falciparum </it>infection were observed in both villages. Specific IgG response increased progressively from one-year to 5-year old children and then stayed high in children from five to nine years old. The children with <it>P. falciparum </it>infection had higher specific antibody responses compared to negative infection children, suggesting a strong relationship between production of specific antibodies and malaria transmission, rather than protective immunity. In contrast, higher variation of antibody levels according to malaria transmission periods were found in Mboula compared to Gankette Balla. In Mboula, the peak of malaria transmission was followed by a considerable increase in antibody levels, whereas low and constant anti-malaria IgG response was observed throughout the year in Gankette Balla.</p> <p>Conclusion</p> <p>This study shows that the development of anti-malaria antibody response was profoundly different according to areas where malaria exposure is dependent with different <it>Anopheles </it>species. These results are discussed according to i) the use of immunological tool for the evaluation of malaria transmission and ii) the influence of <it>Anopheles </it>vectors species on the regulation of antibody responses to <it>P. falciparum</it>.</p
- …
