62,965 research outputs found

    Stellar footprints of a variable G

    Get PDF
    Theories with varying gravitational constant GG have been studied since long time ago. Among them, the most promising candidates as alternatives of the standard General Relativity are known as scalar-tensor theories. They provide consistent descriptions of the observed universe and arise as the low energy limit of several pictures of unified interactions. Therefore, an increasing interest on the astrophysical consequences of such theories has been sparked over the last few years. In this essay we comment on two methodological approaches to study evolution of astrophysical objects within a varying-GG theory, and the particular results we have obtained for boson and white dwarf stars.Comment: This essay received Honorable Mention in the 1999 Essay Competition of the Gravity Research Foundatio

    Modelling incomplete fusion dynamics of weakly-bound nuclei at near-barrier energies

    Full text link
    The classical dynamical model for reactions induced by weakly-bound nuclei at near-barrier energies is developed further. It allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the population of high-spin states in reaction products as well as the angular distribution of direct alpha-production. Model calculations indicate that incomplete fusion is an effective mechanism for populating high-spin states, and its contribution to the direct alpha production yield diminishes with decreasing energy towards the Coulomb barrier. It also becomes notably separated in angles from the contribution of no-capture breakup events. This should facilitate the experimental disentanglement of these competing reaction processes.Comment: 12 pages, 7 figures (for better resolution figures please contact the author), Accepted in Journal of Physics

    Quark matter equation of state and stellar properties

    Full text link
    In this paper we study strange matter by investigating the stability window within the QMDD model at zero temperature and check that it can explain the very massive pulsar recently detected. We compare our results with the ones obtained from the MIT bag model and see that the QMDD model can explain larger masses, due to the stiffening of the equation of state

    KΛ(1405)K\Lambda(1405) configuration of the KKˉNK\bar{K}N system

    Full text link
    We study the KΛ(1405)K\Lambda(1405) configuration of the KKˉNK\bar{K}N system by considering KπΣK\pi\Sigma as a coupled channel. We solve the Faddeev equations for these systems and find confirmation of the existence of a new NN^{*} resonance around 1920 MeV with Jπ=1/2+J^{\pi}=1/2^{+} predicted in a single-channel potential model and also found in a Faddeev calculation as an a0(980)Na_{0}(980)N state, with the a0(980)a_{0}(980) generated in the KKˉK\bar{K}, πη\pi\eta interaction.Comment: Published versio

    A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859

    Full text link
    XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitional pulsar PSR J1023+0038. While the surface magnetic field of a typical NS in a LMXB is lower by more than four orders of magnitude than the much more intense fields of neutron stars accompanying high-mass binaries, the radius at which the matter in-flow is truncated in a NS-LMXB system is much lower. The magnetic field at the magnetospheric interface is then orders of magnitude larger at this interface, and as consequence, so is the power to accelerate electrons. We demonstrate that the cooling of the accelerated electron population takes place mainly through synchrotron interaction with the magnetic field permeating the interface, and through inverse Compton losses due to the interaction between the electrons and the synchrotron photons they emit. We found that self-synchrotron Compton processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References update
    corecore