433 research outputs found
Comparison of Mutation Patterns in Full-Genome A/H3N2 Influenza Sequences Obtained Directly from Clinical Samples and the Same Samples after a Single MDCK Passage
Human influenza viruses can be isolated efficiently from clinical samples using Madin-Darby canine kidney (MDCK) cells. However, this process is known to induce mutations in the virus as it adapts to this non-human cell-line. We performed a systematic study to record the pattern of MDCK-induced mutations observed across the whole influenza A/H3N2 genome. Seventy-seven clinical samples collected from 2009-2011 were included in the study. Two full influenza genomes were obtained for each sample: one from virus obtained directly from the clinical sample and one from the matching isolate cultured in MDCK cells. Comparison of the full-genome sequences obtained from each of these sources showed that 42% of the 77 isolates had acquired at least one MDCK-induced mutation. The presence or absence of these mutations was independent of viral load or sample origin (in-patients versus out-patients). Notably, all the five hemagglutinin missense mutations were observed at the hemaggutinin 1 domain only, particularly within or proximal to the receptor binding sites and antigenic site of the virus. Furthermore, 23% of the 77 isolates had undergone a MDCK-induced missense mutation, D151G/N, in the neuraminidase segment. This mutation has been found to be associated with reduced drug sensitivity towards the neuraminidase inhibitors and increased viral receptor binding efficiency to host cells. In contrast, none of the neuraminidase sequences obtained directly from the clinical samples contained the D151G/N mutation, suggesting that this mutation may be an indicator of MDCK culture-induced changes. These D151 mutations can confound the interpretation of the hemagglutination inhibition assay and neuraminidase inhibitor resistance results when these are based on MDCK isolates. Such isolates are currently in routine use in the WHO influenza vaccine and drug-resistance surveillance programs. Potential data interpretation miscalls can therefore be avoided by careful exclusion of such D151 mutants after further sequence analysis.published_or_final_versio
Inside-Out Evacuation of Transitional Protoplanetary Disks by the Magneto-Rotational Instability
How do T Tauri disks accrete? The magneto-rotational instability (MRI)
supplies one means, but protoplanetary disk gas is typically too poorly ionized
to be magnetically active. Here we show that the MRI can, in fact, explain
observed accretion rates for the sub-class of T Tauri disks known as
transitional systems. Transitional disks are swept clean of dust inside rim
radii of ~10 AU. Stellar coronal X-rays ionize material in the disk rim,
activating the MRI there. Gas flows from the rim to the star, at a rate limited
by the depth to which X-rays ionize the rim wall. The wider the rim, the larger
the surface area that the rim wall exposes to X-rays, and the greater the
accretion rate. Interior to the rim, the MRI continues to transport gas; the
MRI is sustained even at the disk midplane by super-keV X-rays that Compton
scatter down from the disk surface. Accretion is therefore steady inside the
rim. Blown out by radiation pressure, dust largely fails to accrete with gas.
Contrary to what is usually assumed, ambipolar diffusion, not Ohmic
dissipation, limits how much gas is MRI-active. We infer values for the
transport parameter alpha on the order of 0.01 for GM Aur, TW Hyd, and DM Tau.
Because the MRI can only afflict a finite radial column of gas at the rim, disk
properties inside the rim are insensitive to those outside. Thus our picture
provides one robust setting for planet-disk interaction: a protoplanet interior
to the rim will interact with gas whose density, temperature, and transport
properties are definite and decoupled from uncertain initial conditions. Our
study also supplies half the answer to how disks dissipate: the inner disk
drains from the inside out by the MRI, while the outer disk photoevaporates by
stellar ultraviolet radiation.Comment: Accepted to Nature Physics June 7, 2007. The manuscript for
publication is embargoed per Nature policy. This arxiv.org version contains
more technical details and discussion, and is distributed with permission
from the editors. 10 pages, 4 figure
Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma.
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bepsilon have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bepsilon are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future
Simulations of extensional flow in microrheometric devices
We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels
The Hong Kong mental morbidity survey: background and study design
Mental disorders are highly prevalent conditions with immense disease burden. To inform health
and social services policy formulation, local psychiatric epidemiological data are required. The Hong
Kong Mental Morbidity Survey is a 3-year population-based study in which 5700 community-dwelling
Chinese adults aged between 16 and 75 years were interviewed with the aim of evaluating the prevalence, co-morbidity, functional impairment, physical morbidity, and social determinants of significant mental disorders in the population. This paper describes the background and design of the survey, and is the first territory-wide psychiatric epidemiological study in Hong Kong.
精神障礙非常普遍,且對社會造成巨大的疾病負擔。收集本地精神病流行病學資料,對計劃相關的衛生及社會服務政策至為重要。香港精神健康調查是一個為期3年,以人口為基礎的大型研究,透過對5700名介乎16歲至75歲之華裔市民進行精神健康評估,檢視重要的精神障礙的現患率、共病、功能障礙、身體疾病以及社會決定因素。本文闡述這項首個全港大型精神病流行病研究的背景和設計。published_or_final_versio
Impacto da exposição académica no estado de saúde de estudantes universitários
OBJECTIVE: To assess the impact of academic life on health status of university students. METHODS: Longitudinal study including 154 undergraduate students from the Universidade de Aveiro, Portugal, with at least two years of follow-up observations. Sociodemographic and behavioral characteristics were collected using questionnaires. Students' weight, height, blood pressure, serum glucose, serum lipids and serum homocysteine levels were measured. Regression analysis was performed using linear mixed-effect models, allowing for random effects at the participant level. RESULTS: A higher rate of dyslipidemia (44.0% vs. 28.6%), overweight (16.3% vs. 12.5%) and smoking (19.3% vs. 0.0%) was found among students exposed to the academic life when compared to freshmen. Physical inactivity was about 80%. Total cholesterol, high density lipoprotein-cholesterol (HDL-C), triglycerides, systolic blood pressure, and physical activity levels were significantly associated with gender (p<0.001). Academic exposure was associated with increased low density lipoprotein-cholesterol (LDL-C) levels (about 1.12 times), and marginally with total cholesterol levels (p=0.041). CONCLUSIONS: High education level does not seem to have a protective effect favoring a healthier lifestyle and being enrolled in health-related areas does not seem either to positively affect students' behaviors. Increased risk factors for non-transmissible diseases in university students raise concerns about their well-being. These results should support the implementation of health promotion and prevention programs at universities.OBJETIVO: Avaliar a influência da vida académica na saúde de estudantes universitários.
MÉTODOS: Estudo longitudinal envolvendo 154 estudantes de graduação da Universidade de Aveiro, Portugal, por pelo menos dois anos de
acompanhamento. Características sociodemográfi cas e comportamentais foram recordados, por meio de questionários. Foram medidos peso, altura,pressão arterial, glicemia, perfil lipídico e os níveis séricos de homocisteína
dos alunos. Foi realizada análise de regressão com modelos lineares mistos
considerando as medidas repetidas de cada sujeito.
RESULTADOS: Estudantes expostos à vida académica, quando comparados àqueles de ingresso recente à universidade apresentaram proporção mais elevada de dislipidemia (44,0% versus 28,6%), sobrepeso (16,3% versus
12,5%) e tabagismo (19,3% versus 0,0%). No geral, foi observada alta proporção de sedentarismo (cerca de 80%). O colesterol total, lipoproteína de alta densidade, triglicérides, pressão arterial sistólica e níveis de atividade física apresentaram associação signifi cativa com o género (p < 0,001). A exposição académica apresentou-se associada com o aumento dos níveis das lipoproteínas de baixa densidade (cerca de 1,12 vezes), e marginalmente com os níveis de
colesterol total (p = 0,041).
CONCLUSÕES: Nem o alto nível de instrução parece ter papel protetor na adoção de estilo de vida saudável, tampouco o envolvimento com áreas de saúde muda o comportamento dos estudantes. Altas proporções de fatores
de risco para doenças não-transmissíveis em jovens universitários podem afetar seu bem-estar. Os resultados podem servir de apoio às universidades no desenvolvimento de programas de prevenção e promoção da saúde
Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport
Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis
Regulation of microRNA biogenesis and turnover by animals and their viruses
Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes
A counterbalanced cross-over study of the effects of visual, auditory and no feedback on performance measures in a simulated cardiopulmonary resuscitation
<p>Abstract</p> <p>Background</p> <p>Previous research has demonstrated that trained rescuers have difficulties achieving and maintaining the correct depth and rate of chest compressions during both in and out of hospital cardiopulmonary resuscitation (CPR). Feedback on rate and depth mitigate decline in performance quality but not completely with the residual performance decline attributed to rescuer fatigue. The purpose of this study was to examine the effects of feedback (none, auditory only and visual only) on the quality of CPR and rescuer fatigue.</p> <p>Methods</p> <p>Fifteen female volunteers performed 10 minutes of 30:2 CPR in each of three feedback conditions: none, auditory only, and visual only. Visual feedback was displayed continuously in graphic form. Auditory feedback was error correcting and provided by a voice assisted CPR manikin. CPR quality measures were collected using SkillReporter<sup>® </sup>software. Blood lactate (mmol/dl) and perceived exertion served as indices of fatigue. One-way and two way repeated measures analyses of variance were used with alpha set <it>a priori </it>at 0.05.</p> <p>Results</p> <p>Visual feedback yielded a greater percentage of correct compressions (78.1 ± 8.2%) than did auditory (65.4 ± 7.6%) or no feedback (44.5 ± 8.1%). Compression rate with auditory feedback (87.9 ± 0.5 compressions per minute) was less than it was with both visual and no feedback (p < 0.05). CPR performed with no feedback (39.2 ± 0.5 mm) yielded a shallower average depth of compression and a lower percentage (55 ± 8.9%) of compressions within the accepted 38-50 mm range than did auditory or visual feedback (p < 0.05). The duty cycle for auditory feedback (39.4 ± 1.6%) was less than it was with no feedback (p < 0.05). Auditory feedback produced lower lactate concentrations than did visual feedback (p < 0.05) but there were no differences in perceived exertion.</p> <p>Conclusions</p> <p>In this study feedback mitigated the negative effects of fatigue on CPR performance and visual feedback yielded better CPR performance than did no feedback or auditory feedback. The perfect confounding of sensory modality and periodicity of feedback (visual feedback provided continuously and auditory feedback provided to correct error) leaves unanswered the question of optimal form and timing of feedback.</p
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
- …
