1,703 research outputs found
Capacitance switching in SiO 2 thin film embedded with Ge nanocrystals caused by ultraviolet illumination
A structure of indium tin oxide/ SiO 2 embedded with Ge nanocrystal (nc-Ge) /p-Si substrate was fabricated. The capacitance of the structure can be switched to a high-capacitance or low-capacitance state by an ultraviolet (UV) illumination. The increase (or decrease) in the capacitance is accompanied with the decrease (or increase) in the oxide resistance. The capacitance switching is explained in terms of the UV illumination-induced charging and discharging in the nc-Ge. © 2009 American Institute of Physics.published_or_final_versio
Temperature dependence of current transport in Al/Al 2O 3 nanocomposite thin films
In this work, Al/Al 2O 3 nanocomposite thin film is deposited on Si substrate by radio frequency sputtering to form a metal-insulator-semiconductor structure. It is found that the current conduction at low fields is greatly enhanced with temperature. The current increase can be attributed to the decrease in the tunneling resistance and/or the formation of some tunneling paths due to the release of some measurement-induced charges trapped in the thin film as a result of increase in the temperature. The current conduction evolves with a trend toward a three-dimensional transport as the temperature increases. © 2011 American Institute of Physics.published_or_final_versio
Charging mechanism in a SiO 2 matrix embedded with Si nanocrystals
One of the applications of a Si nanocrystals (nc-Si) embedded in a Si O2 matrix is in the area of nonvolatile memory devices based on the charge storage in the material system. However, whether the charge trapping mainly occurs at the nc-SiSi O2 interface or in the nc-Si is still unclear. In this work, by x-ray photoemission spectroscopy analysis of the Si 2p peaks, the concentrations of both the nc-Si and the Si suboxides that exist at the nc-SiSi O2 interface are determined as a function of thermal annealing, and the charging effect is also measured by monitoring the shift of the surface C 1s peak. It is observed that the annealing-caused reduction of the total concentration of the interfacial suboxides is much faster than that of both the C 1s shift and the nc-Si concentration. In addition, the trend of the C 1s shift coincides with that of the nc-Si concentration. The results suggest that the Si nanocrystal, rather than the nc-SiSi O2 interface, plays the dominant role in the charging effect. © 2006 American Institute of Physics.published_or_final_versio
Spine system equivalence: A new protocol for standardized multi-axis comparison tests
This is the final version of the paper.Accurately replicating the in-vivo loads of the spine is a critical aspect of in-vitro spine testing,
but the complexity of this structure renders this challenging. The design and control capabilities
of multi-axis spine systems vary considerably, and though recommendations have been made
[1, 2], standardized in-vitro methods have not yet been established. As such, it is often difficult to compare different biomechanical studies [3]. The aim of this study was to use international standards [4, 5], and spine testing recommendations [1-3] to develop a standardized protocol for the evaluation of different multi-axis spinal test systems. The protocol was implemented on three six-axis spine systems, and the data used to establish stiffness and phase angle limits. [...]This research was supported by the Catherine Sharpe Foundation, the Enid Linder Foundation, the Higher Education Innovation Fund, and the University of Bath Alumni Fund
Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing
Influence of thermal annealing on electroluminescence (EL) from multiple-Si-implanted silicon nitride films has been investigated. A reduced injection current and an enhanced EL intensity have been obtained simultaneously by increasing the annealing temperature, which results in a higher EL quantum efficiency. In addition, four emission bands are identified, and their peak energies, intensities, and full widths at half maxima are found to change with annealing temperature. A model is proposed to illustrate the carrier transport, the mechanisms of the four emission bands, and the evolution of the EL bands with annealing as well. The two major bands and the minor ultraviolet band are explained in terms of the recombination of the injected electrons in either the silicon dangling-bond (≡ Si 0) states or the nitride conduction band with the injected holes in either the band tail states above the nitride valence band or the valence band itself, while the minor near infrared band is attributed to the Si nanocrystals formed in the thin film. © 2009 American Institute of Physics.published_or_final_versio
Quenching and reactivation of electroluminescence by charge trapping and detrapping in Si-implanted silicon nitride thin film
In this brief, quenching of electroluminescence (EL) from Si-implanted silicon nitride (SNR) thin film under a forward bias has been observed. The quenching phenomenon is shown to be due to charge trapping in the defect states involved in the radiative recombination. The composite EL bands have different quenching rates, causing a change in the EL spectrum shape by the EL quenching. Release of the trapped charges by a low-temperature annealing at 120 °C or an application of a reverse gate bias can partially recover the quenched EL both in the intensity and spectrum shape. The quenching phenomenon poses a serious challenge to the application of Si-implanted SNR thin films in light-emitting devices. © 2009 IEEE.published_or_final_versio
Photon-induced conduction modulation in SiO 2 thin films embedded with Ge nanocrystals
The authors report the photon-induced conduction modulation in Si O2 thin films embedded with germanium nanocrystals (nc-Ge). The conduction of the oxide could be switched to a higher- or lower-conductance state by a ultraviolet (UV) illumination. The conduction modulation is caused by charging and discharging in the nc-Ge due to the UV illumination. If the charging process is dominant, the oxide conductance is reduced; however, if the discharging process is dominant, the oxide conductance is increased. As the conduction can be modulated by UV illumination, it could have potential applications in silicon-based optical memory devices. © 2007 American Institute of Physics.published_or_final_versio
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
Influence of charge trapping on electroluminescence from Si-nanocrystal light emitting structure
We report a study on the influence of charge trapping on electroluminescence (EL) from Si nanocrystal (nc-Si) distributed throughout a 30 nm Si O2 thin film synthesized by Si+ implantation into an oxide film thermally grown on a p -type Si substrate. The electron and hole trapping in the nc-Si located near the indium tin oxide gate and the Si substrate, respectively, cause a reduction in the EL intensity. The reduced EL intensity can be recovered after the trapped charges are released. A partial recovery can be easily achieved by the application of a positive gate voltage or thermal annealing at hot temperatures (e.g., 120 °C) for a short duration. The present study highlights the impact of charging in the nc-Si on the light emission efficiency and its stability of nc-Si light-emitting devices. © 2007 American Institute of Physics.published_or_final_versio
Lifestyle index for mortality prediction using multiple ageing cohorts in the USA, UK and Europe
Current mortality prediction indexes are mainly based on functional morbidity and comorbidity, with limited information for risk prevention. This study aimed to develop and validate a modifiable lifestyle-based mortality predication index for older adults. Data from 51,688 participants (56% women) aged ≥50 years in 2002 Health and Retirement Study, 2002 English Longitudinal Study of Ageing and 2004 Survey of Health Ageing and Retirement in Europe were used to estimate coefficients of the index with cohort-stratified Cox regression. Models were validated across studies and compared to the Lee index (having comorbid and morbidity predictors). Over an average of 11-year follow-up, 10,240 participants died. The lifestyle index includes smoking, drinking, exercising, sleep quality, BMI, sex and age; showing adequate model performance in internal validation (C-statistic 0.79; D-statistic 1.94; calibration slope 1.13) and in all combinations of internal-external cross-validation. It outperformed Lee index (e.g. differences in C-statistic = 0.01, D-statistic = 0.17, P < 0.001) consistently across health status. The lifestyle index stratified participants into varying mortality risk groups, with those in the top quintile having 13.5% excess absolute mortality risk over 10 years than those in the bottom 50th centile. Our lifestyle index with easy-assessable behavioural factors and improved generalizability may maximize its usability for personalized risk management
- …
