127 research outputs found

    No effect of 24 h severe energy restriction on appetite regulation and ad libitum energy intake in overweight and obese males

    Get PDF
    Background/Objectives: Long-term success of weight loss diets might depend on how the appetite regulatory system responds to energy restriction (ER). This study determined the effect of 24 h severe ER on subjective and hormonal appetite regulation, subsequent ad libitum energy intake and metabolism. Subjects/Methods: In randomised order, eight overweight or obese males consumed a 24 h diet containing either 100% (12105 (1174 kJ; energy balance; EB) or 25% (3039 (295) kJ; ER) of estimated daily energy requirements (EER). An individualised standard breakfast containing 25% of EER (3216 (341) kJ) was consumed the following morning and resting energy expenditure, substrate utilisation and plasma concentrations of acylated ghrelin, glucagon-like peptide-1 (GLP-17–36), glucose-dependant insulinotropic peptide (GIP1–42), glucose, insulin and non-esterified fatty acid (NEFA) were determined for 4 h after breakfast. Ad libitum energy intake was assessed in the laboratory on day 2 and via food records on day 3. Subjective appetite was assessed throughout. Results: Energy intake was not different between trials for day 2 (EB: 14946 (1272) kJ; ER: 15251 (2114) kJ; P=0.623), day 3 (EB: 10580 (2457) kJ; 10812 (4357) kJ; P=0.832) or day 2 and 3 combined (P=0.693). Subjective appetite was increased during ER on day 1 (P0.381). Acylated ghrelin, GLP-17–36 and insulin were not different between trials (P>0.104). Post-breakfast area under the curve (AUC) for NEFA (P<0.05) and GIP1–42 (P<0.01) were greater during ER compared with EB. Fat oxidation was greater (P<0.01) and carbohydrate oxidation was lower (P<0.01) during ER, but energy expenditure was not different between trials (P=0.158). Conclusions: These results suggest that 24 h severe ER does not affect appetite regulation or energy intake in the subsequent 48 h. This style of dieting may be conducive to maintenance of a negative EB by limiting compensatory eating behaviour, and therefore may assist with weight loss

    Systematic Genetic Nomenclature for Type VII Secretion Systems

    Get PDF
    CITATION: Bitter, W., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10): 1-6, doi: 10.1371/journal.ppat.1000507.The original publication is available at http://journals.plos.org/plospathogensMycobacteria, such as the etiological agent of human tuberculosis, Mycobacterium tuberculosis, are protected by an impermeable cell envelope composed of an inner cytoplasmic membrane, a peptidoglycan layer, an arabinogalactan layer, and an outer membrane. This second membrane consists of covalently linked, tightly packed long-chain mycolic acids [1,2] and noncovalently bound shorter lipids involved in pathogenicity [3–5]. To ensure protein transport across this complex cell envelope, mycobacteria use various secretion pathways, such as the SecA1-mediated general secretory pathway [6,7], an alternative SecA2-operated pathway [8], a twin-arginine translocation system [9,10], and a specialized secretion pathway variously named ESAT-6-, SNM-, ESX-, or type VII secretion [11–16]. The latter pathway, hereafter referred to as type VII secretion (T7S), has recently become a large and competitive research topic that is closely linked to studies of host–pathogen interactions of M. tuberculosis [17] and other pathogenic mycobacteria [16]. Molecular details are just beginning to be revealed [18–22] showing that T7S systems are complex machineries with multiple components and multiple substrates. Despite their biological importance, there has been a lack of a clear naming policy for the components and substrates of these systems. As there are multiple paralogous T7S systems within the Mycobacteria and orthologous systems in related bacteria, we are concerned that, without a unified nomenclature system, a multitude of redundant and obscure gene names will be used that will inevitably lead to confusion and hinder future progress. In this opinion piece we will therefore propose and introduce a systematic nomenclature with guidelines for name selection of new components that will greatly facilitate communication and understanding in this rapidly developing field of research.http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1000507Publisher's versio

    No effect of 14 day consumption of whole grain diet compared to refined grain diet on antioxidant measures in healthy, young subjects: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological evidence supports that a diet high in whole grains is associated with lowered risk of chronic diseases included coronary heart disease, obesity, type 2 diabetes, and some types of cancer. One potential mechanism for the protective properties of whole grains is their antioxidant content. The aim of this study was to compare differences in antioxidant measures when subjects consumed either refined or whole grain diets.</p> <p>Methods</p> <p>Twenty healthy subjects took part in a randomized, crossover dietary intervention study. Subjects consumed either a refined grain or whole grain diet for 14 days and then the other diet for the next 14 days. Male subjects consumed 8 servings of grains per day and female subjects consumed 6 servings of grains per day. Blood and urine samples were collected at the end of each diet. Antioxidant measures included oxygen radical absorbance capacity (ORAC) in blood, and isoprostanes and thiobarbituric acid reactive substances (TBARS) in urine.</p> <p>Results</p> <p>The whole grain diet was significantly higher in dietary fiber, vitamin B6, folate, selenium, copper, zinc, iron, magnesium and cystine compared to the refined grain diet. Despite high intakes of whole grains, no significant differences were seen in any of the antioxidant measures between the refined and whole grain diets.</p> <p>Conclusions</p> <p>No differences in antioxidant measures were found when subjects consumed whole grain diets compared to refined grain diets.</p

    Effects of Meal Frequency on Metabolic Profiles and Substrate Partitioning in Lean Healthy Males

    Get PDF
    The daily number of meals has an effect on postprandial glucose and insulin responses, which may affect substrate partitioning and thus weight control. This study investigated the effects of meal frequency on 24 h profiles of metabolic markers and substrate partitioning.Twelve (BMI:21.6 ± 0.6 kg/m(2)) healthy male subjects stayed after 3 days of food intake and physical activity standardization 2 × 36 hours in a respiration chamber to measure substrate partitioning. All subjects randomly received two isoenergetic diets with a Low meal Frequency (3 ×; LFr) or a High meal Frequency (14 ×; HFr) consisting of 15 En% protein, 30 En% fat, and 55 En% carbohydrates. Blood was sampled at fixed time points during the day to measure metabolic markers and satiety hormones.Glucose and insulin profiles showed greater fluctuations, but a lower AUC of glucose in the LFr diet compared with the HFr diet. No differences between the frequency diets were observed on fat and carbohydrate oxidation. Though, protein oxidation and RMR (in this case SMR + DIT) were significantly increased in the LFr diet compared with the HFr diet. The LFr diet increased satiety and reduced hunger ratings compared with the HFr diet during the day.The higher rise and subsequently fall of insulin in the LFr diet did not lead to a higher fat oxidation as hypothesized. The LFr diet decreased glucose levels throughout the day (AUC) indicating glycemic improvements. RMR and appetite control increased in the LFr diet, which can be relevant for body weight control on the long term.ClinicalTrials.gov NCT01034293

    Genetic Effects at Pleiotropic Loci Are Context-Dependent with Consequences for the Maintenance of Genetic Variation in Populations

    Get PDF
    Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine

    Hidden dynamics of soccer leagues: the predictive ‘power’ of partial standings

    Get PDF
    Objectives Soccer leagues reflect the partial standings of the teams involved after each round of competition. However, the ability of partial league standings to predict end-of-season position has largely been ignored. Here we analyze historical partial standings from English soccer to understand the mathematics underpinning league performance and evaluate the predictive ‘power’ of partial standings. Methods Match data (1995-2017) from the four senior English leagues was analyzed, together with random match scores generated for hypothetical leagues of equivalent size. For each season the partial standings were computed and Kendall’s normalized tau-distance and Spearman r-values determined. Best-fit power-law and logarithmic functions were applied to the respective tau-distance and Spearman curves, with the ‘goodness-of-fit’ assessed using the R2 value. The predictive ability of the partial standings was evaluated by computing the transition probabilities between the standings at rounds 10, 20 and 30 and the final end-of-season standings for the 22 seasons. The impact of reordering match fixtures was also evaluated. Results All four English leagues behaved similarly, irrespective of the teams involved, with the tau-distance conforming closely to a power law (R2>0.80) and the Spearman r-value obeying a logarithmic function (R2>0.87). The randomized leagues also conformed to a power-law, but had a different shape. In the English leagues, team position relative to end-of-season standing became ‘fixed’ much earlier in the season than was the case with the randomized leagues. In the Premier League, 76.9% of the variance in the final standings was explained by round-10, 87.0% by round-20, and 93.9% by round-30. Reordering of match fixtures appeared to alter the shape of the tau-distance curves. Conclusions All soccer leagues appear to conform to mathematical laws, which constrain the league standings as the season progresses. This means that partial standings can be used to predict end-of-season league position with reasonable accuracy

    Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies

    Get PDF
    The prevention and management of weeds have been difficult throughout the history of food production. We are now entering into a new era where new challenges are arising more rapidly due in part to the rapid population growth, which places an unprecedented demand upon both natural and agricultural ecosystems to fulfil food, fibre, and feed for at least another two billion people by 2050. Climatic change is associated with a higher frequency of extreme weather events, and it is generally agreed that this will have a drastic impact on ecosystem productivity and biodiversity. The present world atmospheric temperature has increased by 1.0 °C since 1900 with half of this rise coming in the past 30 years. Crop production is directly affected by the direct effects of climate change (temperature and water stress) and indirect effects of increased competition from weeds and other pest species. In a field situation, crop plants are inevitably surrounded by an assemblage of C3 and C4 plants, and a considerable variation in the growth response of weeds to climate change have been reported. In this chapter, we present an overview of the impact of temperature rise, carbon dioxide increase, and changed rainfall patterns on weed composition, distribution, abundance, and our current approaches to weed management. There is a high risk that some weed species will shift their range with the change in temperature and precipitation patterns. The efficacy of chemical weed control depends on the environmental conditions before, during and after the herbicide application. The changes in physiology, morphology, and anatomy of plants will result in altered weed growth, crop-weed competition, and herbicide efficacy under elevated temperature and/or carbon dioxide. Global warming may increase the risk of evolution of nontarget site resistance mechanisms against herbicides in the weed plants and thus decrease herbicide efficacy. The anticipated actions in these areas are also discussed in the end which may enhance our understanding of the impact of climate change on the practice and future of weed management and crop production. © Springer Nature Switzerland AG 2020

    Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review

    Full text link
    corecore