21 research outputs found
Binding to an unusual inactive kinase conformation by highly selective inhibitors of inositol-requiring enzyme 1a kinase-endoribonuclease
A series of imidazo[1,2-b]pyridazin-8-amine kinase inhibitors were discovered to allosterically inhibit the endoribonuclease function of the dual kinase-endoribonuclease inositol-requiring enzyme 1α (IRE1α), a key component of the unfolded protein response in mammalian cells and a potential drug target in multiple human diseases. Inhibitor optimization gave compounds with high kinome selectivity that prevented endoplasmic reticulum stress-induced IRE1α oligomerization and phosphorylation, and inhibited endoribonuclease activity in human cells. X-ray crystallography showed the inhibitors to bind to a previously unreported and unusually disordered conformation of the IRE1α kinase domain that would be incompatible with back-to-back dimerization of the IRE1α protein and activation of the endoribonuclease function. These findings increase the repertoire of known IRE1α protein conformations and can guide the discovery of highly selective ligands for the IRE1α kinase site that allosterically inhibit the endoribonuclease
Inter- and intra-specific variation in myosin light chain and troponin I composition in fast fibres from two species of fish (genus Oreochromis) which have different temperature-dependent contractile properties.
The contractile properties and myofibrillar protein composition of fast muscle have been characterized in pure strains of two tropical fish Oreochromis niloticus and O. andersoni. Single fast muscle fibres were isolated from the abdominal myotomes and chemically skinned. The maximum tension-temperature relationships of fibres were similar at 25-30° C, but diverged below 17° C. At 10° C, maximum tension was around 60% higher in O. andersoni (160 ± 15 kN m-2) than O. niloticus (105 ±13 kN m-2) (mean ±sd). The myofibrillar protein composition of fast fibres was investigated using one-dimensional and two-dimensional gel electrophoresis and peptide mapping. The two Oreochromis species differed with respect to the composition of myosin light chains, troponin I and mysoin heavy chains (V8 protease and chymotrypsin peptide maps). An unexpected finding was the presence of two isoforms of myosin light chain 1 in O. andersoni, with apparent molecular masses of 27.5 kDa (LC1f1) and 26.9 kDa (LC1f2). Individuals with LC1f1 (n=20) and LC1f1+LC1f2 (n=12) were represented in the population studied. The myosin light chain 3 (LC3f) content of fibres was similar in both cases. Breeding experiments established that these intra-specific variations in isoform composition were heritable. Fast muscle from O. niloticus and O. andersoni contain two isoforms of troponin I (TNIf1+TNIf2) which were both expressed in single fibres. The identity of TNI was confirmed using a stationary phase troponin-C affinity column. Of the 20 O. niloticus studied seven contained only TNIf1. The two Oreochromis species studied produce fertile F1 hybrids, are susceptible to ploidy manipulation, have a short generation time and rapid growth rates. They therefore represent a good model for investigating the genetic mechanisms underlying the inheritance of different force-generating capacities in fish
A fragment-based approach applied to a highly flexible target: Insights and challenges towards the inhibition of HSP70 isoforms.
The heat shock protein 70s (HSP70s) are molecular chaperones implicated in many cancers and of significant interest as targets for novel cancer therapies. Several HSP70 inhibitors have been reported, but because the majority have poor physicochemical properties and for many the exact mode of action is poorly understood, more detailed mechanistic and structural insight into ligand-binding to HSP70s is urgently needed. Here we describe the first comprehensive fragment-based inhibitor exploration of an HSP70 enzyme, which yielded an amino-quinazoline fragment that was elaborated to a novel ATP binding site ligand with different physicochemical properties to known adenosine-based HSP70 inhibitors. Crystal structures of amino-quinazoline ligands bound to the different conformational states of the HSP70 nucleotide binding domain highlighted the challenges of a fragment-based approach when applied to this particular flexible enzyme class with an ATP-binding site that changes shape and size during its catalytic cycle. In these studies we showed that Ser275 is a key residue in the selective binding of ATP. Additionally, the structural data revealed a potential functional role for the ATP ribose moiety in priming the protein for the formation of the ATP-bound pre-hydrolysis complex by influencing the conformation of one of the phosphate binding loops
Discovery of 2-(3-Benzamidopropanamido)thiazole-5-carboxylate Inhibitors of the Kinesin HSET (KIFC1) and the Development of Cellular Target Engagement Probes.
The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach
Discovery of 2-(3-Benzamidopropanamido)thiazole-5-carboxylate Inhibitors of the Kinesin HSET (KIFC1) and the Development of Cellular Target Engagement Probes.
The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach
