1,282 research outputs found
Discovery of a transient radiation belt at Saturn
Radiation belts have been detected in situ at five planets. Only at Earth however has any variability in their intensity been heretofore observed, in indirect response to solar eruptions and high altitude nuclear explosions. The Cassini spacecraft's MIMI/LEMMS instrument has now detected systematic radiation belt variability elsewhere. We report three sudden increases in energetic ion intensity around Saturn, in the vicinity of the moons Dione and Tethys, each lasting for several weeks, in response to interplanetary events caused by solar eruptions. However, the intensifications, which could create temporary satellite atmospheres at the aforementioned moons, were sharply restricted outside the orbit of Tethys. Unlike Earth, Saturn has almost unchanging inner ion radiation belts: due to Saturn's near-symmetrical magnetic field, Tethys and Dione inhibit inward radial transport of energetic ions, shielding the planet's main, inner radiation belt from solar wind influences
hp-adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems
This work is concerned with the derivation of an a posteriori error estimator for Galerkin approximations to nonlinear initial value problems with an emphasis on finite-time existence in the context of blow-up. The structure of the derived estimator leads naturally to the development of both h and hp versions of an adaptive algorithm designed to approximate the blow-up time. The adaptive algorithms are then applied in a series of numerical experiments, and the rate of convergence to the blow-up time is investigated
Examining a staging model for anorexia nervosa: empirical exploration of a four stage model of severity.
Background: An illness staging model for anorexia nervosa (AN) has received increasing attention, but assessing the merits of this concept is dependent on empirically examining a model in clinical samples. Building on preliminary findings regarding the reliability and validity of the Clinician Administered Staging Instrument for Anorexia Nervosa (CASIAN), the current study explores operationalising CASIAN severity scores into stages and assesses their relationship with other clinical features. Method: In women with DSM-IV-R AN and sub-threshold AN (all met AN criteria using DSM 5), receiver operating curve (ROC) analysis (n = 67) assessed the relationship between the sensitivity and specificity of each stage of the CASIAN. Thereafter chi-square and post-hoc adjusted residual analysis provided a preliminary assessment of the validity of the stages comparing the relationship between stage and treatment intensity and AN sub-types, and explored movement between stages after six months (Time 3) in a larger cohort (n = 171). Results: The CASIAN significantly distinguished between milder stages of illness (Stage 1 and 2) versus more severe stages of illness (Stages 3 and 4), and approached statistical significance in distinguishing each of the four stages from one other. CASIAN Stages were significantly associated with treatment modality and primary diagnosis, and CASIAN Stage at Time 1 was significantly associated with Stage at 6 month follow-up. Conclusions: Provisional support is provided for a staging model in AN. Larger studies with longer follow-up of cases are now needed to replicate and extend these findings and evaluate the overall utility of staging as well as optimal staging models
Increased ventral striatal volume in college-aged binge drinkers
BACKGROUND
Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala.
METHOD
T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data.
RESULTS
Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups.
CONCLUSIONS
Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor
Systematic review of factors influencing patient and practitioner delay in diagnosis of upper gastrointestinal cancer
As knowledge on the causation of cancers advances and new treatments are developed, early recognition and accurate diagnosis becomes increasingly important. This review focused on identifying factors influencing patient and primary care practitioner delay for upper gastrointestinal cancer. A systematic methodology was applied, including extensive searches of the literature published from 1970 to 2003, systematic data extraction, quality assessment and narrative data synthesis. Included studies were those evaluating factors associated with the time interval between a patient first noticing a cancer symptom and presenting to primary care, between a patient first presenting to primary care and being referred to secondary care, or describing an intervention designed to reduce those intervals. Twenty-five studies were included in the review. Studies reporting delay intervals demonstrated that the patient phase of delay was greater than the practitioner phase, whilst patient-related research suggests that recognition of symptom seriousness is more important than recognition of the presence of the symptom. The main factors related to practitioner delay were misdiagnosis, application and interpretation of tests, and the confounding effect of existing disease. Greater understanding of patient factors is required, along with evaluation of interventions to ensure appropriate diagnosis, examination and investigation
Myosin-1C augments secretion of von Willebrand factor by linking contractile actomyosin machinery to the plasma membrane.
Blood endothelial cells control the hemostatic and inflammatory response by secreting von Willebrand factor (VWF) and P-selectin from storage organelles called Weibel-Palade bodies (WPB). Actin-associated motor proteins regulate this secretory pathway at multiple points. Prior to fusion, myosin Va forms a complex that anchors WPBs to peripheral actin structures allowing maturation of content. Post-fusion, an actomyosin ring/coat is recruited and compresses the WPB to forcibly expel the largest VWF multimers. Here we provide the first evidence for the involvement of class I myosins during regulated VWF secretion. We show that the unconventional myosin-1C (Myo1c) is recruited post-fusion via its pleckstrin homology domain in an actin-independent process. This provides a link between the actin ring and phosphatidylinositol 4,5-bisphosphate (PIP2) at the membrane of the fused organelle and is necessary to ensure maximal VWF secretion. This is an active process requiring Myo1c ATPase activity as inhibition of class I myosins using the inhibitor Pentachloropseudilin or expression of an ATPase deficient Myo1c rigor mutant perturbs the expulsion of VWF and alters the kinetics of the exocytic actin ring. These data offer a novel insight into the control of an essential physiological process and provide a new way in which it can be regulated
Recommended from our members
Attribution: how is it relevant for loss and damage policy and practice?
Attribution has become a recurring issue in discussions about Loss and Damage (L&D). In this highly-politicised context, attribution is often associated with responsibility and blame; and linked to debates about liability and compensation. The aim of attribution science, however, is not to establish responsibility, but to further scientific understanding of causal links between elements of the Earth System and society. This research into causality could inform the management of climate-related risks through improved understanding of drivers of relevant hazards, or, more widely, vulnerability and exposure; with potential benefits regardless of political positions on L&D. Experience shows that it is nevertheless difficult to have open discussions about the science in the policy sphere. This is not only a missed opportunity, but also problematic in that it could inhibit understanding of scientific results and uncertainties, potentially leading to policy planning which does not have sufficient scientific evidence to support it. In this chapter, we first explore this dilemma for science-policy dialogue, summarising several years of research into stakeholder perspectives of attribution in the context of L&D. We then aim to provide clarity about the scientific research available, through an overview of research which might contribute evidence about the causal connections between anthropogenic climate change and losses and damages, including climate science, but also other fields which examine other drivers of hazard, exposure, and vulnerability. Finally, we explore potential applications of attribution research, suggesting that an integrated and nuanced approach has potential to inform planning to avert, minimise and address losses and damages. The key messages are
In the political context of climate negotiations, questions about whether losses and damages can be attributed to anthropogenic climate change are often linked to issues of responsibility, blame, and liability.
Attribution science does not aim to establish responsibility or blame, but rather to investigate drivers of change.
Attribution science is advancing rapidly, and has potential to increase understanding of how climate variability and change is influencing slow onset and extreme weather events, and how this interacts with other drivers of risk, including socio-economic drivers, to influence losses and damages.
Over time, some uncertainties in the science will be reduced, as the anthropogenic climate change signal becomes stronger, and understanding of climate variability and change develops.
However, some uncertainties will not be eliminated. Uncertainty is common in science, and does not prevent useful applications in policy, but might determine which applications are appropriate. It is important to highlight that in attribution studies, the strength of evidence varies substantially between different kinds of slow onset and extreme weather events, and between regions. Policy-makers should not expect the later emergence of conclusive evidence about the influence of climate variability and change on specific incidences of losses and damages; and, in particular, should not expect the strength of evidence to be equal between events, and between countries.
Rather than waiting for further confidence in attribution studies, there is potential to start working now to integrate science into policy and practice, to help understand and tackle drivers of losses and damages, informing prevention, recovery, rehabilitation, and transformation
Total synthesis of Escherichia coli with a recoded genome
Nature uses 64 codons to encode the synthesis of proteins from the genome, and chooses 1 sense codon—out of up to 6 synonyms—to encode each amino acid. Synonymous codon choice has diverse and important roles, and many synonymous substitutions are detrimental. Here we demonstrate that the number of codons used to encode the canonical amino acids can be reduced, through the genome-wide substitution of target codons by defined synonyms. We create a variant of Escherichia coli with a four-megabase synthetic genome through a high-fidelity convergent total synthesis. Our synthetic genome implements a defined recoding and refactoring scheme—with simple corrections at just seven positions—to replace every known occurrence of two sense codons and a stop codon in the genome. Thus, we recode 18,214 codons to create an organism with a 61-codon genome; this organism uses 59 codons to encode the 20 amino acids, and enables the deletion of a previously essential transfer RNA
A new insight for monitoring ungulates : density surface modelling of roe deer in a Mediterranean habitat
We would like to thank the University of Aveiro (Department of Biology) and FCT/MEC for the financial support to CESAM RU (UID/AMB/50017) through national funds and, where applicable, co-financed by the FEDER, within the PT2020 Partnership Agreement. TAM is partially funded by FCT, Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013.Ungulates are especially difficult to monitor, and population estimates are challenging to obtain; nevertheless, such information is fundamental for effective management. This is particularly important for expanding species such as roe deer (Capreolus capreolus), whose populations dramatically increased in number and geographic distribution over the last decades. In an attempt to follow population trends and assess species ecology, important methodological advances were recently achieved by combining line or point sampling with geographic information systems (GIS). In this study, we combined density surface modelling (DSM) with line transect survey to predict roe deer density in northeastern Portugal. This was based on modelling pellet group counts as a function of environmental factors while taking into account the probability of detecting pellets and conversion factors to relate pellet density to animal density. We estimated a global density of 3.01 animals/100 ha (95 % CI 0.37–3.51) with a 32.82 % CV. Roe deer densities increased with increasing distance to roads as well as with higher percentage of cover areas and decreased with increasing distance to human populations. This recently developed spatial method can be advantageous to predict density over space through the identification of key factors influencing species abundance. Furthermore, surface maps for subset areas will enable to visually depict abundance distribution of wild populations. This will enable the assessment of areas where ungulate impacts should be minimized, allowing an adaptive management through time.PostprintPeer reviewe
- …
