375 research outputs found

    From Quantum to Classical: the Quantum State Diffusion Model

    Get PDF
    Quantum mechanics is nonlocal. Classical mechanics is local. Consequently classical mechanics can not explain all quantum phenomena. Conversely, it is cumbersome to use quantum mechanics to describe classical phenomena. Not only are the computations more complex, but - and this is the main point - it is conceptually more difficult: one has to argue that nonlocality, entanglement and the principle of superposition can be set aside when crossing the "quantum principle of superposition should become irrelevant in the classical limit. But why should one argue? Shouldn't it just come out of the equations? Does it come out of the equations? This contribution is about the last question. And the answer is: "it depends on which equation"

    From quantum fusiliers to high-performance networks

    Full text link
    Our objective was to design a quantum repeater capable of achieving one million entangled pairs per second over a distance of 1000km. We failed, but not by much. In this letter we will describe the series of developments that permitted us to approach our goal. We will describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. This mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how this may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The creation rate is shown to be a function of the maximum distance between two adjacent quantum repeaters.Comment: 2 figures, Comments welcom

    Single atom quantum walk with 1D optical superlattices

    Get PDF
    A proposal for the implementation of quantum walks using cold atom technology is presented. It consists of one atom trapped in time varying optical superlattices. The required elements are presented in detail including the preparation procedure, the manipulation required for the quantum walk evolution and the final measurement. These procedures can be, in principle, implemented with present technology.Comment: 6 pages, 7 figure

    Topologically protected localised states in spin chains

    Get PDF
    We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices

    5G network slicing with QKD and quantum-safe security

    Get PDF
    We demonstrate how the 5G network slicing model can be extended to address data security requirements. In this work we demonstrate two different slice configurations, with different encryption requirements, representing two diverse use-cases for 5G networking: namely, an enterprise application hosted at a metro network site, and a content delivery network. We create a modified software-defined networking (SDN) orchestrator which calculates and provisions network slices according to the requirements, including encryption backed by quantum key distribution (QKD), or other methods. Slices are automatically provisioned by SDN orchestration of network resources, allowing selection of encrypted links as appropriate, including those which use standard Diffie-Hellman key exchange, QKD and quantum-resistant algorithms (QRAs), as well as no encryption at all. We show that the set-up and tear-down times of the network slices takes of the order of 1-2 minutes, which is an order of magnitude improvement over manually provisioning a link today

    Persistent entanglement in two coupled SQUID rings in the quantum to classical transition - A quantum jumps approach

    Full text link
    We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. The motivation for this work is based on a series of recent papers. In ~[1] we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions of the Duffing oscillator differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy system. Motivated by a wish to explore more experimentally realisable systems we extended our work in [2,3] to an analysis of SQUID rings. In [3] we showed that the two systems share a common feature. That is, when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists. Our analysis in[3] was restricted to the quantum state diffusion unravelling of the master equation - representing unit efficiency heterodyne detection (or ambi-quadrature homodyne detection). Here we show that very similar behaviour occurs using the quantum jumps unravelling of the master equation. Quantum jumps represents a discontinuous photon counting measurement process. Hence, the results presented here imply that such persistent entanglement is independent of measurement process and that our results may well be quite general in nature.Comment: 6 pages, 3 figures. Published as part of a special issue for the 11th International Conference on Squeezed States and Uncertainty Relations/4th Feynman festival in Olomouc 2009 (This paper extends the results presented in arXiv:0909.4488

    Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of √s=8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |ηγ|40GeV and EγT,2>30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 ± 0.8  pb . The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%

    Search for supersymmetry in events with four or more leptons in √s =13 TeV pp collisions with ATLAS

    Get PDF
    Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb −1 of proton-proton collisions delivered by the Large Hadron Collider at s √ =13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In R -parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively

    Search for supersymmetry at √s = 13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or μμ ) with the same electric charge or at least three isolated leptons. The search also utilises b-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton–proton collisions at s√=13s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb −1−1. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95%95% confidence level up to 1.1–1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550–850 GeV for gluino masses around 1 TeV
    corecore