27 research outputs found
Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production
Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction
Reaction Chemistry and Kinetics of Corn Stalk Pyrolysis without and with Ga/HZSM-5
The bifunctional Ga/HZSM-5 catalyst has been proven having the capability to increase the selectivity of aromatics production during catalytic pyrolysis of furan and woody biomass. However, the reaction chemistry and kinetics of pyrolysis of herbaceous biomass promoted by Ga/HZSM-5 is rarely reported. Pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) analysis and non-isothermal thermogravimetric analysis at four heating rates were carried out to investigate the decomposition behavior and pyrolysis kinetics of corn stalk without and with Ga/HZSM-5. The effective activation energies for corn stalk pyrolysis were calculated by using the Friedman isoconversional method. The Py–GC/MS analysis results indicated that the Ga/HZSM-5 catalyst had a high selectivity toward producing the aromatic chemicals of xylene, toluene and benzene, whereas the major products from non-catalytic pyrolysis of corn stalk were oxygenated compounds. The presence of Ga/HZSM-5 could significantly reduce the effective activation energies of corn stalk pyrolysis from 159.9–352.4 kJ mol−1 to 41.6–99.8 kJ mol−1 in the conversion range of 0.10–0.85
Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts
Recommended from our members
Breaking the chemical and engineering barriers to lignocellulosic biofuels
138-
Recommended from our members
Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils
Pyrolysis oils are the cheapest liquid fuel derived from lignocellulosic biomass. However, pyrolysis oils are a very poor quality liquid fuel that cannot be used in conventional diesel and internal combustion engines. In this paper we show that hydrogen, alkanes (ranging from C1 to C6) and polyols (ethylene glycol, 1,2-propanediol, 1,4-butanediol) can be produced from the aqueous fraction of wood-derived pyrolysis oils (bio-oils). The pyrolysis oil was first phase separated into aqueous and non-aqueous fraction by addition of water. The aqueous phase of bio-oil contained sugars; anhydrosugars; acetic acid; hydroxyacetone; furfural and small amounts of guaiacols. The aqueous fraction was subjected to a low temperature hydrogenation with Ru/C catalyst at 125–175 °C and 68.9 bar. The hydrogenation step converts the various functionalities in the bio-oil (including aldehydes; acids; sugars) to corresponding alcohols. Undesired methane and light gases are also produced in this low-temperature hydrogenation step. Diols (ranging from C2 to C4) and sorbitol are obtained as major products in this step. After the low temperature hydrogenation step either hydrogen or alkanes can be produced by aqueous-phase reforming (APR) or aqueous-phase dehydration/hydrogenation (APD/H) respectively. APR was done with a 1 wt% Pt/Al2O3 catalyst at 265 °C and 55.1 bar. Hydrogen selectivities of up to 60% were observed. The hydrogen selectivity was a function of space velocity. A 4 wt% Pt/SiO2-Al2O3 catalyst at 260 °C and 51.7 bar was used for alkane production by APD/H. The carbon conversion to gas phase products of 35% with alkane selectivity of 45% was obtained for a WHSV of 0.96 h−1 when hydrogen is produced in situ from bio-oil. Alkane selectivity can be improved by supplying hydrogen externally. Alkane selectivities as high as 97% can be obtained when HCl is added to the aqueous-phase of the bio-oil and hydrogen is supplied externally. Model compounds for further bio-oil conversion studies are suggested
Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol
In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm3 H2 could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry
