136 research outputs found

    A module-based analytical strategy to identify novel disease-associated genes shows an inhibitory role for interleukin 7 Receptor in allergic inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of novel genes by high-throughput studies of complex diseases is complicated by the large number of potential genes. However, since disease-associated genes tend to interact, one solution is to arrange them in modules based on co-expression data and known gene interactions. The hypothesis of this study was that such a module could be a) found and validated in allergic disease and b) used to find and validate one ore more novel disease-associated genes.</p> <p>Results</p> <p>To test these hypotheses integrated analysis of a large number of gene expression microarray experiments from different forms of allergy was performed. This led to the identification of an experimentally validated reference gene that was used to construct a module of co-expressed and interacting genes. This module was validated in an independent material, by replicating the expression changes in allergen-challenged CD4<sup>+ </sup>cells. Moreover, the changes were reversed following treatment with corticosteroids. The module contained several novel disease-associated genes, of which the one with the highest number of interactions with known disease genes, <it>IL7R</it>, was selected for further validation. The expression levels of <it>IL7R </it>in allergen challenged CD4<sup>+ </sup>cells decreased following challenge but increased after treatment. This suggested an inhibitory role, which was confirmed by functional studies.</p> <p>Conclusion</p> <p>We propose that a module-based analytical strategy is generally applicable to find novel genes in complex diseases.</p

    Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling

    Get PDF
    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches

    Patterns of Coral Disease across the Hawaiian Archipelago: Relating Disease to Environment

    Get PDF
    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS

    A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs) represent a diverse class of drugs and are among the most commonly used analgesics for arthritic pain worldwide, though long-term use is associated with a spectrum of adverse effects. The introduction of cyclooxygenase-2-selective NSAIDs early in the last decade offered an alternative to traditional NSAIDs with similar efficacy and improved gastrointestinal tolerability; however, emerging concerns about cardiovascular safety resulted in the withdrawal of two agents (rofecoxib and valdecoxib) in the mid-2000s and, subsequently, in an overall reduction in NSAID use. It is now understood that all NSAIDs are associated with some varying degree of gastrointestinal and cardiovascular risk. Guidelines still recommend their use, but little is known of how patients use these agents. While strategies and guidelines aimed at reducing NSAID-associated complications exist, there is a need for evidence-based algorithms combining cardiovascular and gastrointestinal factors that can be used to aid treatment decisions at an individual patient level

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link

    Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome

    Get PDF

    Dysbiotic drift: mental health, environmental grey space, and microbiota

    Get PDF
    corecore