20 research outputs found

    The Tumor Suppressor PRDM5 Regulates Wnt Signaling at Early Stages of Zebrafish Development

    Get PDF
    PRDM genes are a family of transcriptional regulators that modulate cellular processes such as differentiation, cell growth and apoptosis. Some family members are involved in tissue or organ maturation, and are differentially expressed in specific phases of embryonic development. PRDM5 is a recently identified family member that functions as a transcriptional repressor and behaves as a putative tumor suppressor in different types of cancer. Using gene expression profiling, we found that transcriptional targets of PRDM5 in human U2OS cells include critical genes involved in developmental processes, and specifically in regulating wnt signaling. We therefore assessed PRDM5 function in vivo by performing loss-of-function and gain-of-function experiments in zebrafish embryos. Depletion of prdm5 resulted in impairment of morphogenetic movements during gastrulation and increased the occurrence of the masterblind phenotype in axin+/− embryos, characterized by the loss of eyes and telencephalon. Overexpression of PRDM5 mRNA had opposite effects on the development of anterior neural structures, and resulted in embryos with a shorter body axis due to posterior truncation, a bigger head and abnormal somites. In situ hybridization experiments aimed at analyzing the integrity of wnt pathways during gastrulation at the level of the prechordal plate revealed inhibition of non canonical PCP wnt signaling in embryos overexpressing PRDM5, and over-activation of wnt/β-catenin signaling in embryos lacking Prdm5. Our data demonstrate that PRDM5 regulates the expression of components of both canonical and non canonical wnt pathways and negatively modulates wnt signaling in vivo

    Interstitial fluid: the overlooked component of the tumor microenvironment?

    Get PDF
    Background: The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase, together constituting the tissue microenvironment. Here we focus on the interstitial fluid phase of tumors, i.e., the fluid bathing the tumor and stromal cells. Novel knowledge on this compartment may provide important insight into how tumors develop and how they respond to therapy. Results: We discuss available techniques for interstitial fluid isolation and implications of recent findings with respect to transcapillary fluid balance and uptake of macromolecular therapeutic agents. By the development of new methods it is emerging that local gradients exist in signaling substances from neoplastic tissue to plasma. Such gradients may provide new insight into the biology of tumors and mechanistic aspects linked to therapy. The emergence of sensitive proteomic technologies has made the interstitial fluid compartment in general and that of tumors in particular a highly valuable source for tissue-specific proteins that may serve as biomarker candidates. Potential biomarkers will appear locally at high concentrations in the tissue of interest and will eventually appear in the plasma, where they are diluted. Conclusions: Access to fluid that reliably reflects the local microenvironment enables us to identify substances that can be used in early detection and monitoring of disease
    corecore