6,741 research outputs found
Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering
Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS
Two-terminal write-once-read-many-times memory device based on charging-controlled current modulation in Al/Al-Rich Al 2O 3/p-Si diode
A write-once-read-many-times (WORM) memory device was realized based on the charging-controlled modulation in the current conduction of Al/Al-rich Al 2O 3/p-type Si diode. A large increase in the reverse current of the diode could be achieved with a negative charging voltage, e.g., charging at -25 V for 1 ms results in a current increase by about four orders. Memory states of the WORM device could be altered by changing the current conduction with charge trapping in the Al-rich Al 2O 3 layer. The memory exhibited good reading endurance and retention characteristics. © 2011 IEEE.published_or_final_versio
Capacitance switching in SiO 2 thin film embedded with Ge nanocrystals caused by ultraviolet illumination
A structure of indium tin oxide/ SiO 2 embedded with Ge nanocrystal (nc-Ge) /p-Si substrate was fabricated. The capacitance of the structure can be switched to a high-capacitance or low-capacitance state by an ultraviolet (UV) illumination. The increase (or decrease) in the capacitance is accompanied with the decrease (or increase) in the oxide resistance. The capacitance switching is explained in terms of the UV illumination-induced charging and discharging in the nc-Ge. © 2009 American Institute of Physics.published_or_final_versio
Charging-induced changes in reverse current-voltage characteristics of Al/Al-Rich Al 2O 3/p-Si Diodes
An Al-rich Al 2O 3 thin film was deposited on a p-type silicon substrate by radio frequency sputtering to form Al/ Al-rich Al 2O 3/p-Si diodes. The current-voltage (I-V) characteristics of the diodes were determined by carrier injection from either the Si substrate or the Al gate and by carrier transport along the tunneling paths formed by Al nanocrystals distributed in the oxide layer. The reverse I-V characteristics were greatly affected by the charge trapping in the oxide layer, i.e., the electron trapping significantly reduced the reverse current while the hole trapping enhanced the current significantly. However, the charge trapping did not produce a large change in the forward I-V characteristic. © 2009 IEEE.published_or_final_versio
Temperature dependence of current transport in Al/Al 2O 3 nanocomposite thin films
In this work, Al/Al 2O 3 nanocomposite thin film is deposited on Si substrate by radio frequency sputtering to form a metal-insulator-semiconductor structure. It is found that the current conduction at low fields is greatly enhanced with temperature. The current increase can be attributed to the decrease in the tunneling resistance and/or the formation of some tunneling paths due to the release of some measurement-induced charges trapped in the thin film as a result of increase in the temperature. The current conduction evolves with a trend toward a three-dimensional transport as the temperature increases. © 2011 American Institute of Physics.published_or_final_versio
Resistive switching in aluminum/anodized aluminum film structure without forming process
Metal-insulator-metal (MIM) structure was fabricated by partially anodizing aluminum film followed by deposition of another aluminum film. Unipolar resistive switching between a high-resistance state and a low-resistance state with a high resistance ratio (> ∼ 10 4) was observed from the structure. The switching occurred without the requirement of a forming process, which was attributed to the pre-existing conductive filaments in the Al-rich Al x O y layer formed by the anodization. Each resistance state exhibited Ohmic behavior which could be explained by the metallic conduction and electron hopping from one isolated state to the next in the Al-rich Al x O y layer. The MIM structure showed good memory characteristics. © 2009 American Institute of Physics.published_or_final_versio
Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing
Influence of thermal annealing on electroluminescence (EL) from multiple-Si-implanted silicon nitride films has been investigated. A reduced injection current and an enhanced EL intensity have been obtained simultaneously by increasing the annealing temperature, which results in a higher EL quantum efficiency. In addition, four emission bands are identified, and their peak energies, intensities, and full widths at half maxima are found to change with annealing temperature. A model is proposed to illustrate the carrier transport, the mechanisms of the four emission bands, and the evolution of the EL bands with annealing as well. The two major bands and the minor ultraviolet band are explained in terms of the recombination of the injected electrons in either the silicon dangling-bond (≡ Si 0) states or the nitride conduction band with the injected holes in either the band tail states above the nitride valence band or the valence band itself, while the minor near infrared band is attributed to the Si nanocrystals formed in the thin film. © 2009 American Institute of Physics.published_or_final_versio
Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS
A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary
Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion
Focus on vulnerable populations and promoting equity in health service utilization ––an analysis of visitor characteristics and service utilization of the Chinese community health service
Background Community health service in China is designed to provide a convenient and affordable primary health service for the city residents, and to promote health equity. Based on data from a large national study of 35 cities across China, we examined the characteristics of the patients and the utilization of community health institutions (CHIs), and assessed the role of community health service in promoting equity in health service utilization for community residents. Methods Multistage sampling method was applied to select 35 cities in China. Four CHIs were randomly chosen in every district of the 35 cities. A total of 88,482 visitors to the selected CHIs were investigated by using intercept survey method at the exit of the CHIs in 2008, 2009, 2010, and 2011. Descriptive analyses were used to analyze the main characteristics (gender, age, and income) of the CHI visitors, and the results were compared with that from the National Health Services Survey (NHSS, including CHIs and higher levels of hospitals). We also analyzed the service utilization and the satisfactions of the CHI visitors. Results The proportions of the children (2.4%) and the elderly (about 22.7%) were lower in our survey than those in NHSS (9.8% and 38.8% respectively). The proportion of the low-income group (26.4%) was apparently higher than that in NHSS (12.5%). The children group had the lowest satisfaction with the CHIs than other age groups. The satisfaction of the low-income visitors was slightly higher than that of the higher-income visitors. The utilization rate of public health services was low in CHIs. Conclusions The CHIs in China appears to fulfill the public health target of uptake by vulnerable populations, and may play an important role in promoting equity in health service utilization. However, services for children and the elderly should be strengthened
- …
