46 research outputs found
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Diagnosis and treatment of rotatory knee instability
BACKGROUND
Rotatory knee instability is an abnormal, complex three-dimensional motion that can involve pathology of the anteromedial, anterolateral, posteromedial, and posterolateral ligaments, bony alignment, and menisci. To understand the abnormal joint kinematics in rotatory knee instability, a review of the anatomical structures and their graded role in maintaining rotational stability, the importance of concomitant pathologies, as well as the different components of the knee rotation motion will be presented.
MAIN BODY
The most common instability pattern, anterolateral rotatory knee instability in an anterior cruciate ligament (ACL)-deficient patient, will be discussed in detail. Although intra-articular ACL reconstruction is the gold standard treatment for ACL injury in physically active patients, in some cases current techniques may fail to restore native knee rotatory stability. The wide range of diagnostic options for rotatory knee instability including manual testing, different imaging modalities, static and dynamic measurement, and navigation is outlined. As numerous techniques of extra-articular tenodesis procedures have been described, performed in conjunction with ACL reconstruction, to restore anterolateral knee rotatory stability, a few of these techniques will be described in detail, and discuss the literature concerning their outcome.
CONCLUSION
In summary, the essence of reducing anterolateral rotatory knee instability begins and ends with a well-done, anatomic ACL reconstruction, which may be performed with consideration of extra-articular tenodesis in a select group of patients
