132 research outputs found
Interprofessional training for final year healthcare students: a mixed methods evaluation of the impact on ward staff and students of a two-week placement and of factors affecting sustainability
BACKGROUND: Multiple care failings in hospitals have led to calls for increased interprofessional training in medical education to improve multi-disciplinary teamwork. Providing practical interprofessional training has many challenges and remains uncommon in medical schools in the UK. Unlike most previous research, this evaluation of an interprofessional training placement takes a multi-faceted approach focusing not only on the impact on students, but also on clinical staff delivering the training and on outcomes for patients. METHODS: We used mixed methods to examine the impact of a two-week interprofessional training placement undertaken on a medical rehabilitation ward by three cohorts of final year medical, nursing and therapy students. We determined the effects on staff, ward functioning and participating students. Impact on staff was evaluated using the Questionnaire for Psychological and Social factors at work (QPSNordic) and focus groups. Ward functioning was inferred from standard measures of care including length of stay, complaints, and adverse events. Impact on students was evaluated using the Readiness for Interprofessional Learning Survey (RIPLS) among all students plus a placement survey among medical students. RESULTS: Between 2007 and 2010, 362 medical students and 26 nursing and therapy students completed placements working alongside the ward staff to deliver patient care. Staff identified benefits including skills recognition and expertise sharing. Ward functioning was stable. Students showed significant improvements in the RIPLS measures of Teamwork, Professional Identity and Patient-Centred Care. Despite small numbers of students from other professions, medical students’ rated the placement highly. Increasing student numbers and budgetary constraints led to the cessation of the placement after three years. CONCLUSIONS: Interprofessional training placements can be delivered in a clinical setting without detriment to care and with benefits for all participants. While financial support is a necessity, it appears that having students from multiple professions is not critical for a valuable training experience; staff from different professions and students from a single profession can work successfully together. Difficulty in aligning the schedules of different student professions is commonly cited as a barrier to interprofessional training. Our experience challenges this and should encourage provision of authentic interprofessional training experience
Therapeutic opportunities within the DNA damage response
The DNA damage response (DDR) is essential for maintaining the genomic integrity of the cell, and its disruption is one of the hallmarks of cancer. Classically, defects in the DDR have been exploited therapeutically in the treatment of cancer with radiation therapies or genotoxic chemotherapies. More recently, protein components of the DDR systems have been identified as promising avenues for targeted cancer therapeutics. Here, we present an in-depth analysis of the function, role in cancer and therapeutic potential of 450 expert-curated human DDR genes. We discuss the DDR drugs that have been approved by the US Food and Drug Administration (FDA) or that are under clinical investigation. We examine large-scale genomic and expression data for 15 cancers to identify deregulated components of the DDR, and we apply systematic computational analysis to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets
Small tumor necrosis factor receptor biologics inhibit the tumor necrosis factor-p38 signalling axis and inflammation
Anti-TNF therapy has improved the treatment of inflammatory disease but can predispose to infection and malignancy. Here the authors show an anti-TNF biologic peptide that functionally and selectively targets the TNF-p38 pathway in multiple models of inflammation
Nuclear Factor Kappa B Activation Occurs in the Amnion Prior to Labour Onset and Modulates the Expression of Numerous Labour Associated Genes
Background: Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFkB). In this study we characterised the level of NFkB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. Methodology/Principal Findings: We found that a proportion of women exhibit low or moderate NFkB activity while other women exhibit high levels of NFkB activity (n = 12). This activation process does not appear to involve classical pathways of NFkB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised nonactivated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryoni
Getting a Head Start: Diet, Sub-Adult Growth, and Associative Learning in a Seed-Eating Passerine
Developmental stress, and individual variation in response to it, can have important fitness consequences. Here we investigated the consequences of variable dietary protein on the duration of growth and associative learning abilities of zebra finches, Taeniopygia guttata, which are obligate graminivores. The high-protein conditions that zebra finches would experience in nature when half-ripe seed is available were mimicked by the use of egg protein to supplement mature seed, which is low in protein content. Growth rates and relative body proportions of males reared either on a low-protein diet (mature seed only) or a high-protein diet (seed plus egg) were determined from body size traits (mass, head width, and tarsus) measured at three developmental stages. Birds reared on the high-protein diet were larger in all size traits at all ages, but growth rates of size traits showed no treatment effects. Relative head size of birds reared on the two diets differed from age day 95 onward, with high-diet birds having larger heads in proportion to both tarsus length and body mass. High-diet birds mastered an associative learning task in fewer bouts than those reared on the low-protein diet. In both diet treatments, amount of sub-adult head growth varied directly, and sub-adult mass change varied inversely, with performance on the learning task. Results indicate that small differences in head growth during the sub-adult period can be associated with substantial differences in adult cognitive performance. Contrary to a previous report, we found no evidence for growth compensation among birds on the low-protein diet. These results have implications for the study of vertebrate cognition, developmental stress, and growth compensation
Interventions for Non-Injection Substance Use Among US Men Who Have Sex with Men: What is Needed
Myasthenia gravis
Myasthenia gravis (MG) is a rare, autoimmune neuromuscular junction disorder. Contemporary prevalence rates approach 1/5,000. MG presents with painless, fluctuating, fatigable weakness involving specific muscle groups. Ocular weakness with asymmetric ptosis and binocular diplopia is the most typical initial presentation, while early or isolated oropharyngeal or limb weakness is less common. The course is variable, and most patients with initial ocular weakness develop bulbar or limb weakness within three years of initial symptom onset. MG results from antibody-mediated, T cell-dependent immunologic attack on the endplate region of the postsynaptic membrane. In patients with fatigable muscle weakness, the diagnosis of MG is supported by: 1. pharmacologic testing with edrophonium chloride that elicits unequivocal improvement in strength; 2. electrophysiologic testing with repetitive nerve stimulation (RNS) studies and/or single-fiber electromyography (SFEMG) that demonstrates a primary postsynaptic neuromuscular junctional disorder; and 3. serologic demonstration of acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) antibodies. Differential diagnosis includes congenital myasthenic syndromes, Lambert Eaton syndrome, botulism, organophosphate intoxication, mitochondrial disorders involving progressive external ophthalmoplegia, acute inflammatory demyelinating polyradiculoneuropathy (AIDP), motor neuron disease, and brainstem ischemia. Treatment must be individualized, and may include symptomatic treatment with cholinesterase inhibitors and immune modulation with corticosteroids, azathioprine, cyclosporine, and mycophenolate mofetil. Rapid, temporary improvement may be achieved for myasthenic crises and exacerbations with plasma exchange (PEX) or intravenous immunoglobulin (IVIg). Owing to improved diagnostic testing, immunotherapy, and intensive care, the contemporary prognosis is favorable with less than five percent mortality and nearly normal life expectancy
Functional analysis of a novel ENU-induced PHD finger 11 (Phf11) mouse mutant
Previously, human genetic studies have shown association between polymorphisms within the gene encoding plant homeodomain zinc finger protein 11 (PHF11) and asthma-related phenotypes. Initial functional studies have suggested that PHF11 may be involved in the immune response through regulation of T cell activities. In order to study further the gene’s functions, we have investigated the mouse Phf11 locus. We have established and characterised a mouse line harbouring a point mutation in the PHD domain of Phf11. Full-length mouse cDNA for Phf11 was obtained by applying rapid amplification of cDNA ends (RACE). All five exons encoding the PHD domain of Phf11 were directly sequenced in 3840 mouse DNA samples from the UK MRC Harwell ENU (N-ethyl-N-nitrosourea)-mutagenised DNA archive. Mice harbouring a valine to alanine substitution, predicted to have a significant functional impact on the PHD zinc finger domain, were re-derived. These Phf11 mutant mice were outcrossed to C3H mice and then backcrossed for ten generations in order to establish a congenic line harbouring the single point mutation in Phf11. Macroscopic examination, haematology and histological examination of lung structure revealed no significant differences between mutant and wild-type mice. After administration of lipopolysaccharide, the level of expression of Il2, NF-kB and Setdb2 were significantly increased in Phf11 mutant homozygous lungs compared to control littermates. Our results provide evidence that Phf11 can operate as a Th1 cell regulator in immune responses. Moreover, our data indicate that these mice may provide a useful model for future studies on Phf11. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00335-014-9535-x) contains supplementary material, which is available to authorised users
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.</p
- …
