1,145 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells

    Get PDF
    Background Chemokines are attractive candidates for vaccine adjuvants due to their ability to recruit the immune cells. Lactic acid bacteria (LAB)-based delivery vehicles have potential to be used as a cheap and safe option for vaccination. Chemokine produced on the surface of LAB may potentially enhance the immune response to an antigen and this approach can be considered in development of future mucosal vaccines. Results We have constructed strains of Lactobacillus plantarum displaying a chemokine on their surface. L. plantarum was genetically engineered to express and anchor to the surface a protein called CCL3Gag. CCL3Gag is a fusion protein comprising of truncated HIV-1 Gag antigen and the murine chemokine CCL3, also known as MIP-1α. Various surface anchoring strategies were explored: (1) a lipobox-based covalent membrane anchor, (2) sortase-mediated covalent cell wall anchoring, (3) LysM-based non-covalent cell wall anchoring, and (4) an N-terminal signal peptide-based transmembrane anchor. Protein production and correct localization were confirmed using Western blotting, flow cytometry and immunofluorescence microscopy. Using a chemotaxis assay, we demonstrated that CCL3Gag-producing L. plantarum strains are able to recruit immune cells in vitro. Conclusions The results show the ability of engineered L. plantarum to produce a functional chemotactic protein immobilized on the bacterial surface. We observed that the activity of surface-displayed CCL3Gag differed depending on the type of anchor used. The chemokine which is a part of the bacteria-based vaccine may increase the recruitment of immune cells and, thereby, enhance the reaction of the immune system to the vaccine

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe

    Cognitive function in a randomized trial of evolocumab

    Get PDF
    Inga Stuķēna as well as a complete list of investigators is provided in the Supplementary Appendix, available at NEJM.org. https://www.nejm.org/doi/suppl/10.1056/NEJMoa1701131/suppl_file/nejmoa1701131_appendix.pdf Funding Information: (Funded by Amgen; EBBINGHAUS ClinicalTrials.gov number, NCT02207634.) Supported by Amgen. We thank Sarah T. Farias, Ph.D., at UC Davis Health for providing the English-language and translated versions of the Everyday Cognition (ECog) tool. Publisher Copyright: Copyright © 2017 Massachusetts Medical Society.BACKGROUND: Findings from clinical trials of proprotein convertase subtilisin–kexin type 9 (PCSK9) inhibitors have led to concern that these drugs or the low levels of low-density lipoprotein (LDL) cholesterol that result from their use are associated with cognitive deficits. METHODS: In a subgroup of patients from a randomized, placebo-controlled trial of evolocumab added to statin therapy, we prospectively assessed cognitive function using the Cambridge Neuropsychological Test Automated Battery. The primary end point was the score on the spatial working memory strategy index of executive function (scores range from 4 to 28, with lower scores indicating a more efficient use of strategy and planning). Secondary end points were the scores for working memory (scores range from 0 to 279, with lower scores indicating fewer errors), episodic memory (scores range from 0 to 70, with lower scores indicating fewer errors), and psychomotor speed (scores range from 100 to 5100 msec, with faster times representing better performance). Assessments of cognitive function were performed at baseline, week 24, yearly, and at the end of the trial. The primary analysis was a noninferiority comparison of the mean change from baseline in the score on the spatial working memory strategy index of executive function between the patients who received evolocumab and those who received placebo; the noninferiority margin was set at 20% of the standard deviation of the score in the placebo group. RESULTS: A total of 1204 patients were followed for a median of 19 months; the mean (±SD) change from baseline over time in the raw score for the spatial working memory strategy index of executive function (primary end point) was −0.21±2.62 in the evolocumab group and −0.29±2.81 in the placebo group (P<0.001 for noninferiority; P=0.85 for superiority). There were no significant between-group differences in the secondary end points of scores for working memory (change in raw score, −0.52 in the evolocumab group and −0.93 in the placebo group), episodic memory (change in raw score, −1.53 and −1.53, respectively), or psychomotor speed (change in raw score, 5.2 msec and 0.9 msec, respectively). In an exploratory analysis, there were no associations between LDL cholesterol levels and cognitive changes. CONCLUSIONS: In a randomized trial involving patients who received either evolocumab or placebo in addition to statin therapy, no significant between-group difference in cognitive function was observed over a median of 19 months.publishersversionPeer reviewe

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    The 2014 ALMA Long Baseline Campaign: An Overview

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy
    corecore