132 research outputs found
The limit to behavioral inertia and the power of default in voluntary contribution games
It is well documented that people are reluctant to switch from a default option. We experimentally test the robustness of this behavioral inertia in a collective decision-making setting by varying the default option type and the decision-making environment. We examine the impacts of automatic-participation and no-participation default options on subjects’ participation in a public goods provision and their contributions. Two variants of public goods game are employed: the linear and the threshold public goods games. The study shows the evidence of partial stickiness rather than complete stickiness of default options as indicated in empirical studies. Our experimental results square with the evidence of behavioral inertia only when the automatic-participation default is used. This default boosts contributions in the linear public goods game but not in the threshold public goods game. The evidence of partial stickiness is robust to the variation of the game employed, but the effect on contribution is sensitive to it
Errors in chromosome segregation during oogenesis and early embryogenesis
Errors in chromosome segregation occurring during human oogenesis and early embryogenesis are very common. Meiotic chromosome development during oogenesis is subdivided into three distinct phases. The crucial events, including meiotic chromosome pairing and recombination, take place from around 11 weeks until birth. Oogenesis is then arrested until ovulation, when the first meiotic division takes place, with the second meiotic division not completed until after fertilization. It is generally accepted that most aneuploid fetal conditions, such as trisomy 21 Down syndrome, are due to maternal chromosome segregation errors. The underlying reasons are not yet fully understood. It is also clear that superimposed on the maternal meiotic chromosome segregation errors, there are a large number of mitotic errors taking place post-zygotically during the first few cell divisions in the embryo. In this chapter, we summarise current knowledge of errors in chromosome segregation during oogenesis and early embryogenesis, with special reference to the clinical implications for successful assisted reproduction
Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice
Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection
Psychosocial risk factors for suicidality in children and adolescents
Suicidality in childhood and adolescence is of increasing concern. The aim of this paper was to review the published literature identifying key psychosocial risk factors for suicidality in the paediatric population. A systematic two-step search was carried out following the PRISMA statement guidelines, using the terms 'suicidality, suicide, and self-harm' combined with terms 'infant, child, adolescent' according to the US National Library of Medicine and the National Institutes of Health classification of ages. Forty-four studies were included in the qualitative synthesis. The review identified three main factors that appear to increase the risk of suicidality: psychological factors (depression, anxiety, previous suicide attempt, drug and alcohol use, and other comorbid psychiatric disorders); stressful life events (family problems and peer conflicts); and personality traits (such as neuroticism and impulsivity). The evidence highlights the complexity of suicidality and points towards an interaction of factors contributing to suicidal behaviour. More information is needed to understand the complex relationship between risk factors for suicidality. Prospective studies with adequate sample sizes are needed to investigate these multiple variables of risk concurrently and over time
Differential relationships of family drinking with alcohol expectancy among urban school children
<p>Abstract</p> <p>Background</p> <p>Positive alcohol outcome expectancy has consistently been linked with problematic drinking, but there is little population-based evidence on its role on early stages of drinking in childhood. The present study seeks to understand the extent to which drinking of family members is differentially associated with the endorsement of alcohol expectancy in late childhood.</p> <p>Methods</p> <p>A representative sample of 4th and 6th graders (N = 2455) drawn from 28 public schools in an urban region of Taiwan completed a self-administered paper-and-pencil questionnaire. Each student provided information on alcohol expectancy, drinking experiences, and individual and family attributes. Complex survey analyses were performed to evaluate the relationship, with stratification by children's alcohol drinking history.</p> <p>Results</p> <p>An estimated 29% of the 4<sup>th </sup>graders and 43% of the 6<sup>th </sup>graders had initiated alcohol consumption (over 40% of them had drank on three or more occasions). Alcohol drinking-related differences appear in both the endorsement and the correlates of alcohol expectancy. Positive alcohol expectancy was strongly associated with family drinking, particularly the dimension of "enhanced social behaviors"; negative alcohol expectancy was inversely associated with drinking frequency. Among alcohol naïve children, significant connections appear between paternal drinking and three dimensions of positive alcohol expectancy (i.e., enhanced social behaviors:β<sub>wt </sub>= 0.15, promoting relaxation or tension reduction:β<sub>wt </sub>= 0.18, and global positive transformation:β<sub>wt </sub>= 0.22).</p> <p>Conclusions</p> <p>Individual tailored strategies that address family influences on alcohol expectancy may be needed in prevention programs targeting drinking behaviors in children.</p
Social context and sex moderate the association between type D personality and cardiovascular reactivity
peer-reviewedType D personality has been consistently associated with adverse cardiovascular health with atypical cardiovascular reactions to psychological stress one plausible underlying mechanism. However, whether this varies by sex and social context has received little attention. This study examined the interaction between Type D personality, sex and social context on cardiovascular reactivity to acute stress. A sample of 76 healthy undergraduate students (47 female) completed the DS14 Type D measure, before undergoing a traditional cardiovascular reactivity protocol. The social context of the laboratory environment was manipulated to create a social and non-social context using a between-subjects design. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were monitored throughout. No associations were evident for blood pressure. However, a significant personality × sex × social context interaction on HR reactivity was found; here Type D was associated with a higher HR response to the social task amongst males but not females, while Type D females typically exhibited blunted reactions. While these atypical reactions indicate a possible psychophysiological pathway leading to adverse cardiovascular events amongst Type Ds, it appears that Type D males are particularly vulnerable to socially based stressors, exhibiting exaggerated cardiovascular reactions.peer-reviewe
DRD4 Polymorphism Moderates the Effect of Alcohol Consumption on Social Bonding
Development of interpersonal relationships is a fundamental human motivation, and behaviors facilitating social bonding are prized. Some individuals experience enhanced reward from alcohol in social contexts and may be at heightened risk for developing and maintaining problematic drinking. We employed a 3 (group beverage condition) ×2 (genotype) design (N = 422) to test the moderating influence of the dopamine D4 receptor gene (DRD4 VNTR) polymorphism on the effects of alcohol on social bonding. A significant gene x environment interaction showed that carriers of at least one copy of the 7-repeat allele reported higher social bonding in the alcohol, relative to placebo or control conditions, whereas alcohol did not affect ratings of 7-absent allele carriers. Carriers of the 7-repeat allele were especially sensitive to alcohol's effects on social bonding. These data converge with other recent gene-environment interaction findings implicating the DRD4 polymorphism in the development of alcohol use disorders, and results suggest a specific pathway by which social factors may increase risk for problematic drinking among 7-repeat carriers. More generally, our findings highlight the potential utility of employing transdisciplinary methods that integrate genetic methodologies, social psychology, and addiction theory to improve theories of alcohol use and abuse
The distinct role of CD4+ and CD8+ T-cells during the anti-tumour effects of targeted superantigens
To target T-cells to the tumour area we created a recombinant protein of the bacterial superantigen (SAg) Staphylococcal enterotoxin A (SEA) and the Fab-fragment of a tumour-reactive antibody. This antibody-targeted SAg immunotherapy therapy has been shown to be highly efficient, eliminating > 95% of the pulmonary metastasis in mice carrying established melanoma micrometastases. Earlier studies demonstrated that elimination of the C215-expressing B16-melanoma lung metastasis was dependent on interferon (IFN)-γ release and expression of perforin. In the present study, therapeutic effector functions were analysed both locally at the tumour site and systemically in the spleen. In order to elucidate the role of each T-cell subset during Fab–SEA therapy, CD4 knock-out (KO) and CD8 KO mice were used. Tumour size reduction was statistically significant in Fab–SEA-based tumour therapy in both types of T-cell-deficient mice compared to wild-type mice. CD4 KO mice displayed a drastic reduction in the number of tumour-infiltrating macrophages and CD8+ T-cells. Therapy-induced accumulation of perforin-containing cells at the tumour site was significantly impaired in CD8 KO mice, and marginally in CD4 KO mice. Moreover, CD4 KO mice failed to produce substantial amounts of the tumour suppressive cytokine IFN-γ. This is in sharp contrast to normal mice where a massive local release was recorded. CD8 KO mice displayed a spontaneous production of interleukin (IL)-4 and IL-10 locally in the tumour. Neither normal nor CD4 KO mice produced detectable levels of these Th-2-associated cytokines. The high level of IL-10 was demonstrated to inhibit Fab–SEA tumour therapy, since the therapeutic efficacy was significantly higher in IL-10 KO mice. These results illustrate the importance of a finely tuned cellular collaboration to regulate the various phases of an efficient anti-tumour immune response. © 1999 Cancer Research Campaig
Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study
Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes
- …
