75 research outputs found
Catch crop strategy and nitrate leaching following grazed grass-clover
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0,60 or 120 kg of ammonium-N ha-1 in cattle slurry. In spring 2003, two grass-clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley⁄perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley⁄Italian ryegrass reduced leaching by 163–320 kg Nha-1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg Nha-1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catchcrops was reduced compared with the bare soil treatment. It was concluded that the green barley⁄Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers
Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization.
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis)to produce above-ground
biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation.C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main
factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by
the altitude and position of the area relative to the sun
Mineralisation of crop residues on the soil surface or incorporated in the soil under controlled conditions
In the present work, we compare the effect of mature crop residues mixed into a ferralitic soil or placed as a single layer on soil surface on the mineralisation of C and N over 55 days. As residues, we used dry stems of rice, soybean, sorghum, brachiaria and wheat. There were no significant effects of residue placement on C mineralisation kinetics. Decomposition of the residues on the soil surface slightly increased net N mineralisation for residues having the smallest C/N ratio
Decomposição e liberação de nitrogênio de resíduos culturais de plantas de cobertura de solo solteiras e consorciadas
Produção e composição química da uva de videiras Cabernet Sauvignon submetidas à adubação nitrogenada
Mineralização de nitrogênio e carbono em solos sob plantações de eucalipto, em uma sequência de idades
A estimativa da mineralização de N e de C é essencial no desenvolvimento de práticas que maximizem a eficiência no uso de N, especialmente no caso do eucalipto, que apresenta baixa magnitude de resposta à fertilização nitrogenada. Foram estimadas as taxas de mineralização de N e de C e avaliados os potenciais de mineralização de N e de C de solos sob plantações de eucalipto de 1, 3, 5 e 13 anos de idade, crescendo sob condições edafoclimáticas semelhantes. Amostras de solo foram coletadas na profundidade de 0-10 cm, em novembro de 2003. Essas amostras foram incubadas por períodos sucessivos de 1, 1, 1, 2, 2, 4, 4 e 4 semanas, totalizando 19 semanas, sob condições aeróbias, em laboratório. O N mineralizado das amostras incubadas foi extraído periodicamente e determinado por colorimetria, e o C mineralizado, por titulação após liberação de C-CO2 a cada período de incubação. O valor médio de N mineralizado acumulado (Nm) foi de 58 mg kg-1 de N no solo e não diferiu significativamente entre as idades. As quantidades de N potencialmente mineralizável (No) variaram de 58 a 87 mg kg-1, o que representou 3,4 a 5,2 % do N total do solo (Nt), tomando por base a razão No:Nt. A forma predominante de N mineral em todas as idades foi o N-NH4+. As quantidades totais de C mineralizado (Cm) diferiram significativamente entre as idades, variando de 606 a 1.122 mg kg-1 de C no solo. O C potencialmente mineralizável (Co) dos solos foi, em média, de 862 mg kg-1 de C-CO2, o que representou 3,4 % do C orgânico do solo (Corg), de acordo com a razão Co:Corg. A taxa e o potencial de mineralização de C e N não foram influenciados pela idade das plantações do eucalipto. As reservas de N potencialmente mineralizável dos solos seriam suficientes para atender à demanda de N pelo eucalipto em rotações futuras.To maximize the efficiency of N uptake by plants it is important to study N and C mineralization, particularly in the case of eucalyptus, which has a very low response to nitrogen fertilization. The rates of C and N mineralization and C and N mineralization potential were estimated, in soils under 1, 3, 5, and 13 year-old eucalyptus plantations with similar soil and climatic conditions. Soil from the 0-10 cm layer was sampled in November 2003. The samples were incubated under aerobic laboratory conditions for successive periods of 1, 1, 1, 2, 2, 4, 4, 4 weeks in a total of 19 weeks. The mineralized N was periodically extracted and determined colorimetrically, and the mineralized C was determined based on C-CO2 evolution. The average accumulated N was 58 mg kg-1 soil and it did not differ significantly among ages. Potentially mineralizable N (No) varied between 58 to 87 mg kg-1soil, which represented 3.4 to 5.2 % of soil N (Ns); according to No:Ns ratio. N-NH4+ was the predominant form of mineral N. The mineralized C differed significantly among ages (606 to 1,122 mg kg-1 C-CO2 soil). The average potentially mineralizable C (Co) was 862 mg kg-1 C-CO2 soil, representing 3.4 % of soil organic C (Corg) according to the Co:Corg ratio. The rate and mineralization potential of C and N were not influenced by the age of the plantations. The pool of potentially mineralizable N could meet the N demand of eucalyptus in future rotations
- …
