942 research outputs found

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution

    Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.

    Get PDF
    Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file

    Emission of intermediate mass fragments from hot 116^{116}Ba^* formed in low-energy 58^{58}Ni+58^{58}Ni reaction

    Full text link
    The complex fragments (or intermediate mass fragments) observed in the low-energy 58^{58}Ni+58^{58}Ni116\to ^{116}Ba^* reaction, are studied within the dynamical cluster decay model for s-wave with the use of the temperature-dependent liquid drop, Coulomb and proximity energies. The important result is that, due to the temperature effects in liquid drop energy, the explicit preference for α\alpha-like fragments is washed out, though the 12^{12}C (or the complementary 104^{104}Sn) decay is still predicted to be one of the most probable α\alpha-nucleus decay for this reaction. The production rates for non-α\alpha like intermediate mass fragments (IMFs) are now higher and the light particle production is shown to accompany the IMFs at all incident energies, without involving any statistical evaporation process in the model. The comparisons between the experimental data and the (s-wave) calculations for IMFs production cross sections are rather satisfactory and the contributions from other \ell-waves need to be added for a further improvement of these comparisons and for calculations of the total kinetic energies of fragments.Comment: 22 pages, 15 figure

    Системный анализ процесса затвердевания литых заготовок разной массы и назначения

    Get PDF
    Выявлены особенности пространственно-временной эволюции температурных полей в процессе затвердевания разных заготовок (слитков и отливок) для повышения их качества.Виявлено особливості просторово-часової еволюції температурних полів в процесі тверднення різних заготовок (зливків та виливків) для підвищення їх якості.It is revealed the peculiarities of distance-time evolution of the temperature fields in solidification process different billets (ingots and casts) for raise them quality

    The theory of brain-sign: a physical alternative to consciousness

    Get PDF
    Consciousness and the mind are prescientific concepts that begin with Greek theorizing. They suppose human rationality and reasoning placed in the human head by (in Christian terms) God, who structured the universe he created with the same kind of underlying characteristics. Descartes' development of the model included scientific objectivity by placing the mind outside the physical universe. In its failure under evidential scrutiny and without physical explanation, this model is destined for terminal decline. Instead, a genuine biological and physical function for the brain phenomenon can be developed. This is the theory of brain-sign. It accepts the causality of the brain as its physical characteristics, already under scientific scrutiny. What is needed is a new neurophysiological mapping language that specifies the relation of the structure and operation of the brain to organismic action in the world. Still what is lacking is an account of how neurophysiologies in different organisms communicate on dynamic, i.e. unpredictable, tasks. It is this evolved capacity that has emerged as brain-sign. Thus rather than mentality being an inner epistemological parallel world suddenly appearing in the head, brain-sign, as the neural sign of the causal status of the brain, facilitates the communicative medium of otherwise isolated organisms. The biogenesis of the phenomenon emerges directly from the account of the physical brain, and functions as a monistic feature of organisms in the physical world. This new paradigm offers disciplinary compatibility, and genuine development in behavioral and brain sciences

    Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein

    Get PDF
    A method for non-invasive visualization of genetically labelled cells in animal disease models with micron-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical window” above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552

    Superfund, Hedonics, and the Scales of Environmental Justice

    Get PDF
    Environmental justice (EJ) is prominent in environmental policy, yet EJ research is plagued by debates over methodological procedures. A well-established economic approach, the hedonic price method, can offer guidance on one contentious aspect of EJ research: the choice of the spatial unit of analysis. Environmental managers charged with preventing or remedying inequities grapple with these framing problems. This article reviews the theoretical and empirical literature on unit choice in EJ, as well as research employing hedonic pricing to assess the spatial extent of hazardous waste site impacts. The insights from hedonics are demonstrated in a series of EJ analyses for a national inventory of Superfund sites. First, as evidence of injustice exhibits substantial sensitivity to the choice of spatial unit, hedonics suggests some units conform better to Superfund impacts than others. Second, hedonic estimates for a particular site can inform the design of appropriate tests of environmental inequity for that site. Implications for policymakers and practitioners of EJ analyses are discussed
    corecore