362 research outputs found
Separation between coherent and turbulent fluctuations. What can we learn from the Empirical Mode Decomposition?
The performances of a new data processing technique, namely the Empirical
Mode Decomposition, are evaluated on a fully developed turbulent velocity
signal perturbed by a numerical forcing which mimics a long-period flapping.
First, we introduce a "resemblance" criterion to discriminate between the
polluted and the unpolluted modes extracted from the perturbed velocity signal
by means of the Empirical Mode Decomposition algorithm. A rejection procedure,
playing, somehow, the role of a high-pass filter, is then designed in order to
infer the original velocity signal from the perturbed one. The quality of this
recovering procedure is extensively evaluated in the case of a "mono-component"
perturbation (sine wave) by varying both the amplitude and the frequency of the
perturbation. An excellent agreement between the recovered and the reference
velocity signals is found, even though some discrepancies are observed when the
perturbation frequency overlaps the frequency range corresponding to the
energy-containing eddies as emphasized by both the energy spectrum and the
structure functions. Finally, our recovering procedure is successfully
performed on a time-dependent perturbation (linear chirp) covering a broad
range of frequencies.Comment: 23 pages, 13 figures, submitted to Experiments in Fluid
Particles and fields in fluid turbulence
The understanding of fluid turbulence has considerably progressed in recent
years. The application of the methods of statistical mechanics to the
description of the motion of fluid particles, i.e. to the Lagrangian dynamics,
has led to a new quantitative theory of intermittency in turbulent transport.
The first analytical description of anomalous scaling laws in turbulence has
been obtained. The underlying physical mechanism reveals the role of
statistical integrals of motion in non-equilibrium systems. For turbulent
transport, the statistical conservation laws are hidden in the evolution of
groups of fluid particles and arise from the competition between the expansion
of a group and the change of its geometry. By breaking the scale-invariance
symmetry, the statistically conserved quantities lead to the observed anomalous
scaling of transported fields. Lagrangian methods also shed new light on some
practical issues, such as mixing and turbulent magnetic dynamo.Comment: 165 pages, review article for Rev. Mod. Phy
Comparative genomics of Cluster O mycobacteriophages
Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange
The impact of land use/land cover scale on modelling urban ecosystem services
Context
Urbanisation places increasing stress on ecosystem services; however existing methods and data for testing relationships between service delivery and urban landscapes remain imprecise and uncertain. Unknown impacts of scale are among several factors that complicate research. This study models ecosystem services in the urban area comprising the towns of Milton Keynes, Bedford and Luton which together represent a wide range of the urban forms present in the UK.
Objectives
The objectives of this study were to test (1) the sensitivity of ecosystem service model outputs to the spatial resolution of input data, and (2) whether any resultant scale dependency is constant across different ecosystem services and model approaches (e.g. stock- versus flow-based).
Methods
Carbon storage, sediment erosion, and pollination were modelled with the InVEST framework using input data representative of common coarse (25 m) and fine (5 m) spatial resolutions.
Results
Fine scale analysis generated higher estimates of total carbon storage (9.32 vs. 7.17 kg m−2) and much lower potential sediment erosion estimates (6.4 vs. 18.1 Mg km−2 year−1) than analyses conducted at coarser resolutions; however coarse-scale analysis estimated more abundant pollination service provision.
Conclusions
Scale sensitivities depend on the type of service being modelled; stock estimates (e.g. carbon storage) are most sensitive to aggregation across scales, dynamic flow models (e.g. sediment erosion) are most sensitive to spatial resolution, and ecological process models involving both stocks and dynamics (e.g. pollination) are sensitive to both. Care must be taken to select model data appropriate to the scale of inquiry
Prodigious submarine landslides during the inception and early growth of volcanic islands
Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of
turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth’s surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard
Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts
Background: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. Results:The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. Conclusions: We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations
Neighborhood deprivation and biomarkers of health in Britain: The mediating role of the physical environment
Background: Neighborhood deprivation has been consistently linked to poor individual health outcomes; however, studies exploring the mechanisms involved in this association are scarce. The objective of this study was to investigate whether objective measures of the physical environment mediate the association between neighborhood socioeconomic deprivation and biomarkers of health in Britain. Methods: We linked individual-level biomarker data from Understanding Society: The UK Household Longitudinal Survey (2010-2012) to neighborhood-level data from different governmental sources. Our outcome variables were forced expiratory volume in 1 s (FEV1%; n=16,347), systolic blood pressure (SBP; n=16,846), body mass index (BMI; n=19,417), and levels of C-reactive protein (CRP; n=11,825). Our measure of neighborhood socioeconomic deprivation was the Carstairs index, and the neighborhood-level mediators were levels of air pollutants (sulphur dioxide [SO2], particulate matter [PM10], nitrogen dioxide [NO2], and carbon monoxide [CO]), green space, and proximity to waste and industrial facilities. We fitted a multilevel mediation model following a multilevel structural equation framework in MPlus v7.4, adjusting for age, gender, and income. Results: Residents of poor neighborhoods and those exposed to higher pollution and less green space had worse health outcomes. However, only SO2exposure significantly and partially mediated the association between neighborhood socioeconomic deprivation and SBP, BMI, and CRP. Conclusion: Reducing air pollution exposure and increasing access to green space may improve population health but may not decrease health inequalities in Britain
Mean population salt consumption in India: a systematic review
Background: Member states of the WHO, including India, have adopted a target 30% reduction in mean population salt consumption by 2025 to prevent noncommunicable diseases. Our aim was to support this initiative by summarizing existing data that describe mean salt consumption in India. Method: Electronic databases – MEDLINE via Ovid, EMBASE, CINAHL and the Cochrane Database of Systematic Reviews – were searched up to November 2015 for studies that reported mean or median dietary salt intake in Indian adults aged 19 years and older. Random effects meta-analysis was used to obtain summary estimates of salt intake. Results: Of 1201 abstracts identified, 90 were reviewed in full text and 21 were included: 18 cross-sectional surveys (n = 225 024), two randomized trials (n = 255) and one case–control study (n = 270). Data were collected between 1986 and 2014, and reported mean salt consumption levels were between 5.22 and 42.30 g/day. With an extreme outlier excluded, overall mean weighted salt intake was 10.98 g/day (95% confidence interval 8.57–13.40). There was significant heterogeneity between the estimates for contributing studies (I2 = 99.97%) (P homogeneity ≤0.001), which was likely attributable to the different measurement methods used and the different populations studied. There was no evidence of a change in intake over time (P trend = 0.08). Conclusion: The available data leave some uncertainty about exact mean salt consumption in India but there is little doubt that population salt consumption far exceeds the WHO-recommended maximum of 5 g per person per day
Recommended from our members
Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution
This study undertakes a multi-model comparison with the aim to describe and quantify systematic changes of the global energy and water budgets when the horizontal resolution of atmospheric models is increased and to identify common factors of these changes among models. To do so, we analyse an ensemble of twelve atmosphere-only and six coupled GCMs, with different model formulations and with resolutions spanning those of state-of-the-art coupled GCMs, i.e. from resolutions coarser than 100 km to resolutions finer than 25 km. The main changes in the global energy budget with resolution are a systematic increase in outgoing longwave radiation and decrease in outgoing shortwave radiation due to changes in cloud properties, and a systematic increase in surface latent heat flux; when resolution is increased from 100 to 25 km, the magnitude of the change of those fluxes can be as large as 5 W m−2. Moreover, all but one atmosphere-only model simulate a decrease of the poleward energy transport at higher resolution, mainly explained by a reduction of the equator-to-pole tropospheric temperature gradient. Regarding hydrological processes, our results are the following: (1) there is an increase of global precipitation with increasing resolution in all models (up to 40 × 103 km3 year−1) but the partitioning between land and ocean varies among models; (2) the fraction of total precipitation that falls on land is on average 10% larger at higher resolution in grid point models, but it is smaller at higher resolution in spectral models; (3) grid points models simulate an increase of the fraction of land precipitation due to moisture convergence twice as large as in spectral models; (4) grid point models, which have a better resolved orography, show an increase of orographic precipitation of up to 13 × 103 km3 year−1 which explains most of the change in land precipitation; (5) at the regional scale, precipitation pattern and amplitude are improved with increased resolution due to a better simulated seasonal mean circulation. We discuss our results against several observational estimates of the Earth's energy budget and hydrological cycle and show that they support recent high estimates of global precipitation
- …
