17 research outputs found
Biomassa e composição do óleo essencial de manjericão cultivado sob malhas fotoconversoras e colhido em diferentes épocas
Crescimento vegetativo e produção de óleo essencial de hortelã‑pimenta cultivada sob malhas
The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: potential for exploiting effects of ultraviolet radiation in a production system
Optimization of Extraction Conditions and Identification of Organic Volatile Compounds from Strawberry Genotypes
Recommended from our members
UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce 'Revolution' grown under polyethylene films
The growth and production of anthocyanin, flavonoid and phenolic compounds were evaluated in Lollo Rosso lettuce 'Revolution' grown continuously under films varying in their ability to transmit LTV radiation (completely transparent to IN, transparent above 320, 350, 370 and 3 80 nm and completely opaque to LTV radiation). Plants were grown from seed under UV transparent and UV blocking films and destructively harvested 3-4 weeks after transplanting. Plants under a complete UV blocking film (UV400) produced up to 2.2 times more total above ground dry weight than plants under the UV transparent film. In contrast, anthocyanin content in plants under the UV blocking film was approximately eight times lower than in plants under a UV transparent film. Furthermore, there was a curvilinear relationship between the anthocyanin content and LTV wavelength cutoff such that above 370 run there was no further reduction in anthocyanin content. Fluorescence measurements indicated that photosynthetic performance index was 15% higher under the presence of UVB and UVA (UV280) than under the presence of UVA (UV320) and 53% higher than in the absence of UV radiation suggesting protection of the photosynthetic apparatus possibly by phenolic compounds. These findings are of particular importance as the potential of UV transmitting films to increase secondary compounds may offer the opportunity to produce plants commercially with increased health benefits compared to those grown under conventional films
Growth of dropwort plants and their accumulation of bioactive compounds after exposure to UV lamp or LED irradiation
Exogenous 5-aminolevulinic acid alleviates the detrimental effects of UV-B stress on lettuce (Lactuca sativa L) seedlings
One of the abiotic stress factors affecting plant metabolism is ultraviolet-B (UV-B) radiation. 5-Aminolevulinic acid (ALA), a key precursor of porphyrin biosynthesis, promotes plant growth and crop yields. To investigate the alleviating effects of exogenous ALA on the damages caused by UV-B exposure, two different concentrations [10 ppm (ALA1) and 25 ppm (ALA2)] of ALA were applied to lettuce seedlings for 24 h and then they were exposed to 3.3 W m(-2) UV-B. Results showed that UV-B treatment significantly decreased chlorophyll a and b (Chl a and b) concentration, enhanced the activity of antioxidant enzymes, total phenolic concentration, soluble sugar contents, expression of phenylalanine ammonia lyase (PAL) and c-tocopherol methyltransferase (gamma-TMT) genes, the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the rate of superoxide radical (O-2(center dot-)) generation in the lettuce seedlings when compared to the control. Pre-treatment with exogenous ALA significantly enhanced UV-B stress tolerance in lettuce seedlings by decreasing the reactive oxygen species. On the other hand, ALA application caused more increases in the PAL and gamma-TMT gene expression, antioxidant enzymes activities, Chl a and b concentration, total phenolic content, antioxidant capacity and the concentrations of soluble sugars. Obtained results indicated that UV-B radiation exerts an adverse effect on lettuce seedlings, and some of the negative effects of UV-B radiation can be alleviated by exogenous ALA
