2,252 research outputs found
Enhanced magnetocaloric effect in frustrated magnets
The magnetothermodynamics of strongly frustrated classical Heisenberg
antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The
field induced adiabatic temperature change (dT/dH)_S is significantly larger
for such systems compared to ordinary non-frustrated magnets and also exceeds
the cooling rate of an ideal paramagnet in a wide range of fields. An
enhancement of the magnetocaloric effect is related to presence of a
macroscopic number of soft modes in frustrated magnets below the saturation
field. Theoretical predictions are confirmed with extensive Monte Carlo
simulations.Comment: 7 page
Thermodynamic Study of Excitations in a 3D Spin Liquid
In order to characterize thermal excitations in a frustrated spin liquid, we
have examined the magnetothermodynamics of a model geometrically frustrated
magnet. Our data demonstrate a crossover in the nature of the spin excitations
between the spin liquid phase and the high-temperature paramagnetic state. The
temperature dependence of both the specific heat and magnetization in the spin
liquid phase can be fit within a simple model which assumes that the spin
excitations have a gapped quadratic dispersion relation.Comment: 5 figure
Cardiosphere-derived cells demonstrate metabolic flexibility that Is influenced by adhesion status
Adult stem cells demonstrate metabolic flexibility that is regulated by cell adhesion status. The authors demonstrate that adherent cells primarily utilize glycolysis, whereas suspended cells rely on oxidative phosphorylation for their ATP needs. Akt phosphorylation transduces adhesion-mediated regulation of energy metabolism, by regulating translocation of glucose transporters (GLUT1) to the cell membrane and thus, cellular glucose uptake and glycolysis. Cell dissociation, a pre-requisite for cell transplantation, leads to energetic stress, which is mediated by Akt dephosphorylation, downregulation of glucose uptake, and glycolysis. They designed hydrogels that promote rapid cell adhesion of encapsulated cells, Akt phosphorylation, restore glycolysis, and cellular ATP levels
Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states
The results of experimental and theoretical studies of zero-bias anomaly
(ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are
presented. A specific feature of the structures is a coexistence of the 2D and
3D states at the Fermi energy near the semiconductor surface. The dependence of
the measured ZBA amplitude on the strength and orientation of the applied
magnetic field is in agreement with the proposed theoretical model. According
to this model, electrons tunnel into 2D states, and move diffusively in the 2D
layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf,
published versio
Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening
The results of tunnelling studies of the energy spectrum of two-dimensional
(2D) states in a surface quantum well in a semiconductor with inverted band
structure are presented. The energy dependence of quasimomentum of the 2D
states over a wide energy range is obtained from the analysis of tunnelling
conductivity oscillations in a quantizing magnetic field. The spin-orbit
splitting of the energy spectrum of 2D states, due to inversion asymmetry of
the surface quantum well, and the broadening of 2D states at the energies, when
they are in resonance with the heavy hole valence band, are investigated in
structures with different strength of the surface quantum well. A quantitative
analysis is carried out within the framework of the Kane model of the energy
spectrum. The theoretical results are in good agreement with the tunnelling
spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on
request from [email protected]
Field-induced breakdown of the quantum Hall effect
A numerical analysis is made of the breakdown of the quantum Hall effect
caused by the Hall electric field in competition with disorder. It turns out
that in the regime of dense impurities, in particular, the number of localized
states decreases exponentially with the Hall field, with its dependence on the
magnetic and electric field summarized in a simple scaling law. The physical
picture underlying the scaling law is clarified. This intra-subband process,
the competition of the Hall field with disorder, leads to critical breakdown
fields of magnitude of a few hundred V/cm, consistent with observations, and
accounts for their magnetic-field dependence \propto B^{3/2} observed
experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.
Transverse optical plasmons in layered superconductors
We discuss the possible existance of transverse optical plasma modes in
superlattices consisting of Josephson coupled superconducting layers. These
modes appear as resonances in the current-current correlation function, as
opposed to the usual plasmons which are poles in the density-density channel.
We consider both bilayer superlattices, and single layer lattices with a spread
of interlayer Josephson couplings. We show that our model is in quantitative
agreement with the recent experimental observation by a number of groups of a
peak at the Josephson plasma frequency in the optical conductivity of
LaSrCuOComment: Proceedings of LT21, in press, 4 pages, Latex with LTpaper.sty and
epsfig.sty, 2 postscript figure
Rational sequences for the conductance in quantum wires from affine Toda field theories
We analyse the expression for the conductance of a quantum wire which is
decribed by an integrable quantum field theory. In the high temperature regime
we derive a simple formula for the filling fraction. This expression involves
only the inverse of a matrix which contains the information of the asymptotic
phases of the scattering matrix and the solutions of the constant thermodynamic
Bethe ansatz equations. Evaluating these expressions for minimal affine Toda
field theory we recover several sequences of rational numbers, which are
multiples of the famous Jain sequence for the filling fraction occurring in the
context of the fractional quantum Hall effect. For instance we obtain for -minimal affine Toda field theory. The matrices
involved have in general non-rational entries and are not part of previous
classification schemes based on integral lattices.Comment: 9 pages Latex, version to appear in Journal of Physics
Abrupt Change of Josephson Plasma Frequency at the Phase Boundary of the Bragg Glass in Bi_2Sr_2CaCu_2O_{8+\delta}
We report the first detailed and quantitative study of the Josephson coupling
energy in the vortex liquid, Bragg glass and vortex glass phases of
Bi_2Sr_2CaCu_2O_{8+\delta} by the Josephson plasma resonance. The measurements
revealed distinct features in the T- and H-dependencies of the plasma frequency
for each of these three vortex phases. When going across either
the Bragg-to-vortex glass or the Bragg-to-liquid transition line,
shows a dramatic change. We provide a quantitative discussion on the properties
of these phase transitions, including the first order nature of the
Bragg-to-vortex glass transition.Comment: 5pages, 4figure
Josephson Plasma Resonance as a Structural Probe of Vortex Liquid
Recent developments of the Josephson plasma resonance and transport c-axis
measurements in layered high T superconductors allow to probe Josephson
coupling in a wide range of the vortex phase diagram. We derive a relation
between the field dependent Josephson coupling energy and the density
correlation function of the vortex liquid. This relation provides a unique
opportunity to extract the density correlation function of pancake vortices
from the dependence of the plasma resonance on the -component of the
magnetic field at a fixed -axis component.Comment: 4 pages, 1 fugure, accepted to Phys. Rev. Let
- …
