653 research outputs found

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Measurements of the tt¯ charge asymmetry using the dilepton decay channel in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Performance of CMS hadron calorimeter timing and synchronization using test beam, cosmic ray, and LHC beam data

    Get PDF
    This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Time measurement performance results are presented from test beam data taken in the years 2004 and 2006. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. Time synchronization and out-of-time background rejection results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. The inter-channel synchronization is measured to be within ±2 ns

    Actinic Skin Damage and Mortality - the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study

    Get PDF
    BACKGROUND: Exposure to sunlight may decrease the risk of several diseases through the synthesis of vitamin D, whereas solar radiation is the main cause of some skin and eye diseases. However, to the best of our knowledge, the association of sun-induced skin damage with mortality remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Subjects were 8472 white participants aged 25-74 years in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Cardiovascular disease mortality, cancer mortality, and all-cause mortality were obtained by either a death certificate or a proxy interview, or both. Actinic skin damage was examined and recorded by the presence and severity (absent, minimal, moderate, or severe) of overall actinic skin damage and its components (i.e., fine telangiectasia, solar elastosis, and actinic keratoses). Cox regression and Kaplan-Meier methods were applied to explore the associations. A total of 672 cancer deaths, 1500 cardiovascular disease deaths, and 2969 deaths from all causes were documented through the follow-up between 1971 and 1992. After controlling for potential confounding variables, severe overall actinic skin damage was associated with a 45% higher risk for all-cause mortality (95% CI: 1.22, 1.72; P<0.001), moderate overall skin damage with a 20% higher risk (95% CI: 1.08., 1.32; P<0.001), and minimal overall skin damage with no significant mortality difference, when compared to those with no skin damage. Similar results were obtained for all-cause mortality with fine telangiectasia, solar elastosis, and actinic keratoses. The results were similar for cancer and cardiovascular disease mortality. CONCLUSIONS: The present study gives an indication of an association of actinic skin damage with cardiovascular disease, cancer and all-cause mortality in white subjects. Given the lack of support in the scientific literature and potential unmeasured confounding factors, this finding should be interpreted with caution. More independent studies are needed before any practical recommendations can be made
    corecore