6 research outputs found

    Transcriptome Analysis of the Chinese White Wax Scale Ericerus pela with Focus on Genes Involved in Wax Biosynthesis

    Get PDF
    BACKGROUND: The Chinese white wax scale, Ericerus pela Chavannes is economically significant for its role in wax production. This insect has been bred in China for over a thousand years. The wax secreted by the male scale insect during the second-instar larval stage has been widespread used in wax candle production, wax printing, engraving, Chinese medicine, and more recently in the chemical, pharmaceutical, food, and cosmetics industries. However, little is known about the mechanisms responsible for white wax biosynthesis. The characterization of its larval transcriptome may promote better understanding of wax biosynthesis. METHODOLOGY/PRINCIPAL FINDINGS: In this study, characterization of the transcriptome of E. pela during peak wax secretion was performed using Illumina sequencing technology. Illumina sequencing produced 41,839 unigenes. These unigenes were annotated by blastx alignment against the NCBI Non-Redundant (NR), Swiss-Prot, KEGG, and COG databases. A total of 104 unigenes related to white wax biosynthesis were identified, and 15 of them were selected for quantitative real-time PCR analysis. We evaluated the variations in gene expression across different development stages, including egg, first/second instar larvae, male pupae, and male and female adults. Then we identified five genes involved in white wax biosynthesis. These genes were expressed most strongly during the second-instar larval stage of male E. pela. CONCLUSION/SIGNIFICANCE: The transcriptome analysis of E. pela during peak wax secretion provided an overview of gene expression information at the transcriptional level and a resource for gene mining. Five genes related to white wax biosynthesis were identified

    Digital Health Policy and Programs for Hospital Care in Vietnam: Scoping Review

    Get PDF
    The members of the Vietnam ICU Translational Applications Laboratory (VITAL) group are as follows: Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam: An Phuoc Luu, Chanh Quang Ho, Duc Hong Du, Duc Minh Tran, Dung Thi Phuong Nguyen, Giang Thi Nguyen, Hai Bich Ho, Hien Van Ho, Hung Manh Trinh, Huy Quang Nguyen, Khanh Nguyen Quoc Phan, Khoa Dinh Van Le, Kien Trung Dang, Lam Khanh Phung, Lieu Thi Pham, Ngoc Thanh Nguyen, Nhat Tran Huy Phung, Phuong Thanh Le, Quyen Than Ha Nguyen, Thanh Thi Le Nguyen, Thy Bui Xuan Doan, Trieu Trung Huynh, Trinh Huu Khanh Dong, Van Minh Tu Hoang, Van Thi Thanh Ninh, Vuong Lam Nguyen, Yen Minh Lam, Sayem Ahmed, Joseph Donovan, Ronald Geskus, Evelyne Kestelyn, Angela Mcbride, Guy Thwaites, Louise Thwaites, Hugo Turner, Jennifer Ilo Van Nuil, and Sophie Yacoub. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam: Tam Thi Cao, Thuy Bich Duong, Duong Thi Hai Ha, Nghia Dang Trung Ha, Chau Buu Le, Thu Ngoc Minh Le, Thao Thi Mai Le, Tai Thi Hue Luong, Phu Hoan Nguyen, Viet Quoc Nguyen, Nguyen Thanh Nguyen, Phong Thanh Nguyen, Anh Thi Kim Nguyen, Hao Van Nguyen, Duoc Van Thanh Nguyen, Chau Van Vinh Nguyen, Oanh Kieu Nguyet Pham, Van Thi Hong Phan, Qui Tu Phan, Tho Vinh Phan, and Thao Thi Phuong Truong. University of Oxford, Oxford, United Kingdom: David Clifton, Mike English, Shadi Ghiasi, Heloise Greeff, Jannis Hagenah, Ping Lu, Jacob McKnight, Chris Paton, and Tingting Zhu. Imperial College London, London, United Kingdom: Pantellis Georgiou, Bernard Hernandez Perez, Kerri Hill-Cawthorne, Alison Holmes, Stefan Karolcik, Damien Ming, Nicolas Moser, and Jesus Rodriguez Manzano. King's College London, London, United Kingdom: Alberto Gomez, Hamideh Kerdegari, Marc Modat, and Reza Razavi. ETH Zurich, Zurich, Switzerland: Abhilash Guru Dutt, Walter Karlen, Michaela Verling, and Elias Wicki. The University of Melbourne, Melbourne, Australia: Linda Denehy and Thomas Rollinson.Background: There are a host of emergent technologies with the potential to improve hospital care in low- and middle-income countries such as Vietnam. Wearable monitors and artificial intelligence–based decision support systems could be integrated with hospital-based digital health systems such as electronic health records (EHRs) to provide higher level care at a relatively low cost. However, the appropriate and sustainable application of these innovations in low- and middle-income countries requires an understanding of the local government’s requirements and regulations such as technology specifications, cybersecurity, data-sharing protocols, and interoperability. Objective: This scoping review aims to explore the current state of digital health research and the policies that govern the adoption of digital health systems in Vietnamese hospitals. Methods: We conducted a scoping review using a modification of the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. PubMed and Web of Science were searched for academic publications, and Thư Viện Pháp Luật, a proprietary database of Vietnamese government documents, and the Vietnam Electronic Health Administration website were searched for government documents. Google Scholar and Google Search were used for snowballing searches. The sources were assessed against predefined eligibility criteria through title, abstract, and full-text screening. Relevant information from the included sources was charted and summarized. The review process was primarily undertaken by one researcher and reviewed by another researcher during each step. Results: In total, 11 academic publications and 20 government documents were included in this review. Among the academic studies, 5 reported engineering solutions for information systems in hospitals, 2 assessed readiness for EHR implementation, 1 tested physicians’ performance before and after using clinical decision support software, 1 reported a national laboratory information management system, and 2 reviewed the health system’s capability to implement eHealth and artificial intelligence. Of the 20 government documents, 19 were promulgated from 2013 to 2020. These regulations and guidance cover a wide range of digital health domains, including hospital information management systems, general and interoperability standards, cybersecurity in health organizations, conditions for the provision of health information technology (HIT), electronic health insurance claims, laboratory information systems, HIT maturity, digital health strategies, electronic medical records, EHRs, and eHealth architectural frameworks. Conclusions: Research about hospital-based digital health systems in Vietnam is very limited, particularly implementation studies. Government regulations and guidance for HIT in health care organizations have been released with increasing frequency since 2013, targeting a variety of information systems such as electronic medical records, EHRs, and laboratory information systems. In general, these policies were focused on the basic specifications and standards that digital health systems need to meet. More research is needed in the future to guide the implementation of digital health care systems in the Vietnam hospital setting.This study was supported by the Wellcome Trust United Kingdom WT217650/Z/19/Z
    corecore