61 research outputs found

    Malaria and Helminth Co-infections in School and Preschool Children: A Cross-sectional Study in Magu district, north-Western Tanzania.

    Get PDF
    Malaria, schistosomiasis and soil transmitted helminth infections (STH) are important parasitic infections in Sub-Saharan Africa where a significant proportion of people are exposed to co-infections of more than one parasite. In Tanzania, these infections are a major public health problem particularly in school and pre-school children. The current study investigated malaria and helminth co-infections and anaemia in school and pre-school children in Magu district, Tanzania. School and pre-school children were enrolled in a cross-sectional study. Stool samples were examined for Schistosoma mansoni and STH infections using Kato Katz technique. Urine samples were examined for Schistosoma haematobium using the urine filtration method. Blood samples were examined for malaria parasites and haemoglobin concentrations using the Giemsa stain and Haemoque methods, respectively. Out of 1,546 children examined, 1,079 (69.8%) were infected with one or more parasites. Malaria-helminth co-infections were observed in 276 children (60% of all children with P. falciparum infection). Malaria parasites were significantly more prevalent in hookworm infected children than in hookworm free children (p = 0.046). However, this association was non-significant on multivariate logistic regression analysis (OR = 1.320, p = 0.064). Malaria parasite density decreased with increasing infection intensity of S. mansoni and with increasing number of co-infecting helminth species. Anaemia prevalence was 34.4% and was significantly associated with malaria infection, S. haematobium infection and with multiple parasite infections. Whereas S. mansoni infection was a significant predictor of malaria parasite density, P. falciparum and S. haematobium infections were significant predictors of anaemia. These findings suggest that multiple parasite infections are common in school and pre-school children in Magu district. Concurrent P. falciparum, S. mansoni and S. haematobium infections increase the risk of lower Hb levels and anaemia, which in turn calls for integrated disease control interventions. The associations between malaria and helminth infections detected in this study need further investigation

    In quest of a systematic framework for unifying and defining nanoscience

    Get PDF
    This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions

    Full text link
    corecore