1,229 research outputs found
Lessons Learned from Read-Across Case Studies for Repeated-Dose Toxicity
A series of case studies designed to further acceptance of read-across predictions, especially for chronic health-related endpoints, have been evaluated with regard to the knowledge and insight they provide. A common aim of these case studies was to examine sources of uncertainty associated with read-across. While uncertainty is related to the quality and quantity of the read across endpoint data, uncertainty also includes a variety of other factors, the foremost of which is uncertainty associated with the justification of similarity and quantity and quality of data for the source chemical(s). This investigation has demonstrated that the assessment of uncertainty associated with a similarity justification includes consideration of the information supporting the scientific arguments and the data associated with the chemical, toxicokinetic and toxicodynamic similarity. Similarity in chemistry is often not enough to justify fully a read-across prediction, thus, for chronic health endpoints, toxicokinetic and/or toxicodynamic similarity is essential. Data from New Approach Methodology(ies) including high throughput screening, in vitro and in chemico assay and in silico tools, may provide critical information needed to strengthen the toxicodynamic similarity rationale. In addition, it was shown that toxicokinetic (i.e., ADME) similarity, especially metabolism, is often the driver of the overall uncertainty
Validation of a fragment-based profiler for thiol reactivity for the prediction of toxicity: skin sensitisation and tetrahymena pyriformis
This study outlines the use of a recently developed fragment-based thiol reactivity profiler for Michael acceptors to predict toxicity towards Tetrahymena pyriformis and skin sensitisation potency as determined in the Local Lymph Node Assay (LLNA). The results showed that the calculated reactivity parameter from the profiler, -log RC50(calc), was capable of predicting toxicity for both endpoints with excellent statistics. However, the study highlighted the importance of a well-defined applicability domain for each endpoint. In terms of Tetrahymena pyriformis this domain was defined in terms of how fast or slowly a given Michael acceptor reacts with thiol leading to two separate quantitative structure-activity models. The first, for fast reacting chemicals required only –Log RC50(calc) as a descriptor, whilst the second required the addition of a descriptor for hydrophobicity. Modelling of the LLNA required only a single descriptor, -log RC50(calc), enabling potency to be predicted. The applicability domain excluded chemicals capable of undergoing polymerisation and those that were predicted to be volatile. The modelling results for both endpoints, using the –log RC50(calc) value from the profiler, were in keeping with previously published studies that have utilised experimentally determined measurements of reactivity. This results demonstrate the output from the fragment-based thiol reactivity profiler can be used to develop quantitative structure-activity relationship models where reactivity towards thiol is a driver of toxicity
Development of a Fragment-Based in Silico Profiler for Michael Addition Thiol Reactivity
The Adverse Outcome Pathway (AOP) paradigm details the existing knowledge that links the initial interaction between a chemical and a biological system, termed the molecular initiating event (MIE), through a series of intermediate events, to an adverse effect. An important example of a well-defined MIE is the formation of a covalent bond between a biological nucleophile and an electrophilic compound. This particular MIE has been associated with various toxicological end points such as acute aquatic toxicity, skin sensitization, and respiratory sensitization. This study has investigated the calculated parameters that are required to predict the rate of chemical bond formation (reactivity) of a dataset of Michael acceptors. Reactivity of these compounds toward glutathione was predicted using a combination of a calculated activation energy value (Eact, calculated using density functional theory (DFT) calculation at the B3YLP/6-31G+(d) level of theory, and solvent-accessible surface area values (SAS) at the α carbon. To further develop the method, a fragment-based algorithm was developed enabling the reactivity to be predicted for Michael acceptors without the need to perform the time-consuming DFT calculations. Results showed the developed fragment method was successful in predicting the reactivity of the Michael acceptors excluding two sets of chemicals: volatile esters with an extended substituent at the β-carbon and chemicals containing a conjugated benzene ring as part of the polarizing group. Additionally the study also demonstrated the ease with which the approach can be extended to other chemical classes by the calculation of additional fragments and their associated Eact and SAS values. The resulting method is likely to be of use in regulatory toxicology tools where an understanding of covalent bond formation as a potential MIE is important within the AOP paradigm
Read-Across for Rat Oral Gavage Repeated-Dose Toxicity for Short-Chain Mono-Alkylphenols: A Case Study
Short-chain mono-alkylphenols provide an example of where a category-approach to read-across may be used to estimate the repeated-dose endpoint for a number of derivatives. Specifically, the NOAELs of 50 mg/kg bw/d for mono-methylphenols based on a LOAEL of very low systemic toxicity can be read across with confidence to untested mono-alkylphenols in the category. These simple alkylphenols are non-reactive and exhibit an unspecific, reversible polar narcosis mode of toxic action. Briefly, polar narcotics act via unspecific, reversible interactions with biological membranes in a manner similar to cataleptic anaesthetics. The read-across premise includes rapid and complete absorption via the gastrointestinal tract, distribution in the circulatory system, first-pass Phase 2 metabolism in the liver, and elimination of sulphates and glucuronides in the urine. Thus, toxicokinetic parameters are considered to be similar and have the same toxicological significance. Five analogues have high quality experimental oral repeated-dose toxicity data (i.e., OECD TG 408 or OECD TG 422). These repeated-dose toxicity test results exhibit qualitative consistency in symptoms. Typical findings include decreased body weight and slightly increased liver and kidney weights which are generally without concurrent histopathological effects. The sub-chronic findings are quantitatively consistent with the No Observed Adverse Effect Level (NOAEL) of ≥ 50 mg/kg bw/d. Chemical similarity between the analogues is readily defined, and data uncertainty associated with the similarities in toxicokinetic properties, as well as toxicodynamic properties, are low. Uncertainty associated with mechanistic relevance and completeness of the read-across is low-to-moderate, largely because there is no adverse outcome pathway or intermediate event data. Uncertainty associated with mechanistic relevance and completeness of the read-across is reduced by the concordance of in vivo, in vitro, USEPA toxicity forecaster (ToxCast) results, as well as the in silico data. The rat oral repeated-dose NOAEL values for the source substances can be read across to fill the data gaps of the untested analogues in this category with uncertainty deemed equivalent to results from a TG 408 assessment
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.
Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases
Role of the mesoamygdaloid dopamine projection in emotional learning
Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
Disposition of Federally Owned Surpluses
PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions
Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation
BackgroundPeriodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 ¿subgingival¿ bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition.ResultsFollowing 64 h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant.ConclusionsThe gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola
- …
