10,771 research outputs found
Large N, chiral approach to M at finite temperature
We study the temperature dependence of the eta and eta[prime] meson masses within the framework of U(3)L×U(3)R chiral perturbation theory, up to next-to-leading order in a simultaneous expansion in momenta, quark masses and number of colors. We find that both masses decrease at low temperatures, but only very slightly. We analyze higher order corrections and argue that large Nc suggests a discontinuous drop of Meta[prime] at the critical temperature of deconfinement Tc, consistent with a first order transition to a phase with approximate U(1)A symmetry
Towards portable muography with small-area, gas-tight glass Resistive Plate Chambers
Imaging techniques that use atmospheric muons, collectively named under the
neologism "muography", have seen a tremendous growth in recent times, mainly
due to their diverse range of applications. The most well-known ones include
but are not limited to: volcanology, archaeology, civil engineering, nuclear
reactor monitoring, nuclear waste characterization, underground mapping, etc.
These methods are based on the attenuation or deviation of muons to image large
and/or dense objects where conventional techniques cannot work or their use
becomes challenging.
In this context, we have constructed a muography telescope based on "mini
glass-RPC planes" following a design similar to the glass-RPC detectors
developed by the CALICE Collaboration and used by the TOMUVOL experiment in the
context of volcano radiography, but with smaller active area (16 16
cm). The compact size makes it an attractive choice with respect to other
detectors previously employed for imaging on similar scales. An important
innovation in this design is that the detectors are sealed. This makes the
detector more portable and solves the usual safety and logistic issues for gas
detectors operated underground and/or inside small rooms. This paper provides
an overview on our guiding principles, the detector development and our
operational experiences. Drawing on the lessons learnt from the first
prototype, we also discuss our future direction for an improved second
prototype, focusing primarily on a recently adopted serigraphy technique for
the resistive coating of the glass plates.Comment: 8 pages, 7 figures, XV Workshop on Resistive Plate Chambers and
Related Detectors (RPC2020
The Upgrade of the CMS RPC System during the First LHC Long Shutdown
The CMS muon system includes in both the barrel and endcap region Resistive
Plate Chambers (RPC). They mainly serve as trigger detectors and also improve
the reconstruction of muon parameters. Over the years, the instantaneous
luminosity of the Large Hadron Collider gradually increases. During the LHC
Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above
its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the
experiments for this, two long shutdown periods are scheduled for 2013-2014 and
2018-2019. The CMS Collaboration is planning several detector upgrades during
these long shutdowns. In particular, the muon detection system should be able
to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high
particle rates. One of the measures to ensure this, is to extend the present
RPC system with the addition of a 4th layer in both endcap regions. During the
first long shutdown, these two new stations will be equipped in the region
|eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in
avalanche mode, with a similar design as the existing CMS endcap chambers.
Here, we present the upgrade plans for the CMS RPC system for the fist long
shutdown, including trigger simulation studies for the extended system, and
details on the new HPL production, the chamber assembly and the quality control
procedures.Comment: 9 pages, 6 figures, presented by M.Tytgat at the XI workshop on
Resistive Plate Chambers and Related Detectors (RPC2012), INFN - Laboratori
Nazionali di Frascati, February 5-10, 201
Production of Polarized Vector Mesons off Nuclei
Using the light-cone QCD dipole formalism we investigate manifestations of
color transparency (CT) and coherence length (CL) effects in electroproduction
of longitudinally (L) and transversally (T) polarized vector mesons. Motivated
by forthcoming data from the HERMES experiment we predict both the A and Q^2
dependence of the L/T- ratios, for rho^0 mesons produced coherently and
incoherently off nuclei. For an incoherent reaction the CT and CL effects add
up and result in a monotonic A dependence of the L/T-ratio at different values
of Q^2. On the contrary, for a coherent process the contraction of the CL with
Q^2 causes an effect opposite to that of CT and we expect quite a nontrivial A
dependence, especially at Q^2 >> m_V^2.Comment: Revtex 24 pages and 14 figure
LEP1 vs. Future Colliders: Effective Operators And Extended Gauge Group
In an effective Lagrangian approach to physics beyond the Standard Model, it
has been argued that imposing invariance severely restricts
the discovery potential of future colliders. We exhibit a possible way out in
an extended gauge group context.Comment: 14 pages , CERN-TH.6573/92 ULB.TH.04/92 (phyzzx, 3 eps-figs incl.
Particle Dark Matter Candidates
I give a short overview on some of the favorite particle Cold Dark Matter
candidates today, focusing on those having detectable interactions: the axion,
the KK-photon in Universal Extra Dimensions, the heavy photon in Little Higgs
and the neutralino in Supersymmetry. The neutralino is still the most popular,
and today is available in different flavours: SUGRA, nuSUGRA, sub-GUT, Mirage
mediation, NMSSM, effective MSSM, scenarios with CP violation. Some of these
scenarios are already at the level of present sensitivities for direct DM
searches.Comment: 7 pages, 4 figures, 3 references added. Contribution to the
proceedings of the TAUP 07 conference, Sep. 11-15, Sendai, Japa
Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter
A new design of highly granular hadronic calorimeter using Glass Resistive
Plate Chambers (GRPCs) with embedded electronics has been proposed for the
future International Linear Collider (ILC) experiments. It features a 2-bit
threshold semi-digital read-out. Several GRPC prototypes with their electronics
have been successfully built and tested in pion beams. The design of these
detectors is presented along with the test results on efficiency, pad
multiplicity, stability and reproducibility.Comment: 16 pages, 15 figure
Atypical reactive center Kunitz-type inhibitor from the sea anemone <i>Heteractis crispa</i>
The primary structure of a new Kunitz-type protease inhibitor InhVJ from the sea anemone Heteractis crispa (Radianthus macrodactylus) was determined by protein sequencing and cDNA cloning. InhVJ amino acid sequence was shown to share high sequence identity (up to 98%) with the other known Kunitz-type sea anemones sequences. It was determined that the P1 Thr at the reactive site resulted in a decrease of the Ki of InhVJ to trypsin and a-chymotrypsin (7.38 × 10-8 M and 9.93 × 10-7 M, respectively). By structure modeling the functional importance of amino acids at the reactive site as well as at the weak contact site were determined. The significant role of Glu45 for the orientation and stabilization of the InhVJ-trypsin complex was elucidated. We can suggest that there has been an adaptive evolution of the P1 residue at the inhibitor reactive site providing specialization or functional diversification of the paralogs. The appearance of a key so-called P1 Thr residue instead of Lys might lead to refinement of inhibitor specificity in the direction of subfamilies of serine proteases. The absence of Kv channel and TRPV1-receptor modulation activity was confirmed by electrophysiological screening tests
- …
