1,253 research outputs found
Non-Fermi-Liquid Scaling in Ce(Ru_{0.5}Rh_{0.5})_2Si_2
We study the temperature and field dependence of the magnetic and transport
properties of the non-Fermi-liquid compound Ce(Ru_{1-x}Rh_x)_2Si_2 at x=0.5.
For fields 0.1T the experimental results show signatures of the
presence of Kondo-disorder, expected to be large at this concentration. For
larger fields, however, magnetic and transport properties are controlled by the
coupling of the conduction electrons to critical spin-fluctuations. The
temperature dependence of the susceptibility as well as the scaling properties
of the magnetoresistance are in very good agreement with the predictions of
recent dynamical mean-field theories of Kondo alloys close to a spin-glass
quantum critical point.Comment: 4 pages, 4 figures. Improved discussion. To appear in Phys. Rev. Let
Susceptibility Inhomogeneity and Non-Fermi-Liquid Behavior in Ce(Ru_{0.5}Rh_{0.5})_2Si_2
Magnetic susceptibility and muon spin rotation (\muSR) experiments have been
carried out to study the effect of structural disorder on the non-Fermi-liquid
(NFL) behavior of the heavy-fermion alloy Ce(Ru_{0.5}Rh_{0.5})_2Si_2. Analysis
of the bulk susceptibility in the framework of disorder-driven Griffiths-phase
and Kondo-disorder models for NFL behavior yields relatively narrow
distributions of characteristic spin fluctuation energies, in agreement with
\muSR linewidths that give the inhomogeneous spread in susceptibility. \muSR
and NMR data both indicate that disorder explains the "nearly NFL" behavior
observed above \sim2 K, but does not dominate the NFL physics found at low
temperatures and low magnetic fields.Comment: 6 pages, 4 figures, REVTeX, submitted to Phys. Rev.
Further analysis of the quantum critical point of CeLaRuSi
New data on the spin dynamics and the magnetic order of
CeLaRuSi are presented. The importance of the Kondo
effect at the quantum critical point of this system is emphasized from the
behaviour of the relaxation rate at high temperature and from the variation of
the ordered moment with respect to the one of the N\'eel temperature for
various .Comment: Contribution for the Festschrift on the occasion of Hilbert von
Loehneysen 60 th birthday. To be published as a special issue in the Journal
of Low Temperature Physic
The influence of the dislocation distribution heterogeneity degree on the formation of a non-misoriented dislocation cell substructures in f.c.c. metals
Dislocation loops emitted by Frank-Reed source during crossing dislocations of the non-coplanar slip systems are accumulates jogs on the own dislocation line, resulting in the deceleration of the segments of dislocation loops with high jog density. As a result, bending around of the slowed segments the formation of dynamic dipoles in the shear zone occurs. In the present paper we consider formation mechanism of non-misoriented dislocation cell substructure during plastic deformation of f.c.c. metals and conclude that the increase in the degree heterogeneity of dislocation distribution leads to an increase in the jog density and reduce the mean value of arm dynamic dipoles
Ab initio optical properties of Si(100)
We compute the linear optical properties of different reconstructions of the
clean and hydrogenated Si(100) surface within DFT-LDA, using norm-conserving
pseudopotentials. The equilibrium atomic geometries of the surfaces, determined
from self-consistent total energy calculations within the Car-Parrinello
scheme, strongly influence Reflectance Anisotropy Spectra (RAS), showing
differences between the p(2x2) and c(4x2)reconstructions. The Differential
Reflectivity spectrum for the c(4x2) reconstruction shows a positive peak at
energies < 1 eV, in agreement with experimental results.Comment: fig. 2 correcte
Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds
Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress
Dissipative effects on quantum glassy systems
We discuss the behavior of a quantum glassy system coupled to a bath of
quantum oscillators. We show that the system localizes in the absence of
interactions when coupled to a subOhmic bath. When interactions are switched on
localization disappears and the system undergoes a phase transition towards a
glassy phase. We show that the position of the critical line separating the
disordered and the ordered phases strongly depends on the coupling to the bath.
For a given type of bath, the ordered glassy phase is favored by a stronger
coupling. Ohmic, subOhmic and superOhmic baths lead to different transition
lines. We draw our conclusions from the analysis of the partition function
using the replicated imaginary-time formalism and from the study of the
real-time dynamics of the coupled system using the Schwinger-Keldysh closed
time-path formalism.Comment: 39 pages, 13 figures, RevTe
Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity
Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 μm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale
- …
