83 research outputs found
Variation in nomenclature of somatic variants for selection of oncological therapies:Can we reach a consensus soon?
A standardized nomenclature for reporting oncology biomarker variants is key to avoid misinterpretation of results and unambiguous registration in clinical databases. External quality assessment (EQA) schemes have revealed a need for more consistent nomenclature use in clinical genetics. We evaluated the propensity of EQA for improvement of compliance with Human Genome Variation Society (HGVS) recommendations for reporting of predictive somatic variants in lung and colorectal cancer. Variant entries between 2012 and 2018 were collected from written reports and electronic results sheets. In total, 4,053 variants were assessed, of which 12.1% complied with HGVS recommendations. Compliance improved over time from 2.1% (2012) to 22.3% (2018), especially when laboratories participated in multiple EQA schemes. Compliance was better for next-generation sequencing (20.9%) compared with targeted techniques (9.8%). In the 1792 reports, HGVS recommendations for reference sequences were met for 31.9% of reports, for 36.0% of noncommercial, and 26.5% of commercial test methods. Compliance improved from 16.7% (2012) to 33.1% (2018), and after repeated EQA participation. EQA participation improves compliance with HGVS recommendations. The residual percentage of errors in the most recent schemes suggests that laboratories, companies, and EQA providers need to collaborate for additional improvement of harmonization in clinical test reporting
The Relevance of External Quality Assessment for Molecular Testing for ALK Positive Non-Small Cell Lung Cancer:Results from Two Pilot Rounds Show Room for Optimization
Molecular profiling should be performed on all advanced non-small cell lung cancer with non-squamous histology to allow treatment selection. Currently, this should include EGFR mutation testing and testing for ALK rearrangements. ROS1 is another emerging target. ALK rearrangement status is a critical biomarker to predict response to tyrosine kinase inhibitors such as crizotinib. To promote high quality testing in non-small cell lung cancer, the European Society of Pathology has introduced an external quality assessment scheme. This article summarizes the results of the first two pilot rounds organized in 2012-2013.Tissue microarray slides consisting of cell-lines and resection specimens were distributed with the request for routine ALK testing using IHC or FISH. Participation in ALK FISH testing included the interpretation of four digital FISH images.Data from 173 different laboratories was obtained. Results demonstrate decreased error rates in the second round for both ALK FISH and ALK IHC, although the error rates were still high and the need for external quality assessment in laboratories performing ALK testing is evident. Error rates obtained by FISH were lower than by IHC. The lowest error rates were observed for the interpretation of digital FISH images.There was a large variety in FISH enumeration practices. Based on the results from this study, recommendations for the methodology, analysis, interpretation and result reporting were issued. External quality assessment is a crucial element to improve the quality of molecular testing
Sensitive detection methods are key to identify secondary EGFR c.2369C>T p.(Thr790Met) in non-small cell lung cancer tissue samples
Background: Correct identification of the EGFR c.2369C>T p.(Thr790Met) variant is key to decide on a targeted therapeutic strategy for patients with acquired EGFR TKI resistance in non-small cell lung cancer. The aim of this study was to evaluate the correct detection of this variant in 12 tumor tissue specimens tested by 324 laboratories participating in External Quality Assessment (EQA) schemes. Methods: Data from EQA schemes were evaluated between 2013 and 2018 from cell lines (6) and resections (6) containing the EGFR c.2369C>T p.(Thr790Met) mutation. Adequate performance was defined as the percentage of tests for w
Acute kidney injury in children
Acute kidney injury (AKI) (previously called acute renal failure) is characterized by a reversible increase in the blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to regulate fluid and electrolyte homeostasis appropriately. The incidence of AKI in children appears to be increasing, and the etiology of AKI over the past decades has shifted from primary renal disease to multifactorial causes, particularly in hospitalized children. Genetic factors may predispose some children to AKI. Renal injury can be divided into pre-renal failure, intrinsic renal disease including vascular insults, and obstructive uropathies. The pathophysiology of hypoxia/ischemia-induced AKI is not well understood, but significant progress in elucidating the cellular, biochemical and molecular events has been made over the past several years. The history, physical examination, and laboratory studies, including urinalysis and radiographic studies, can establish the likely cause(s) of AKI. Many interventions such as ‘renal-dose dopamine’ and diuretic therapy have been shown not to alter the course of AKI. The prognosis of AKI is highly dependent on the underlying etiology of the AKI. Children who have suffered AKI from any cause are at risk for late development of kidney disease several years after the initial insult. Therapeutic interventions in AKI have been largely disappointing, likely due to the complex nature of the pathophysiology of AKI, the fact that the serum creatinine concentration is an insensitive measure of kidney function, and because of co-morbid factors in treated patients. Improved understanding of the pathophysiology of AKI, early biomarkers of AKI, and better classification of AKI are needed for the development of successful therapeutic strategies for the treatment of AKI
'Gut health': a new objective in medicine?
'Gut health' is a term increasingly used in the medical literature and by the food industry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion and absorption of food, the absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. From a scientific point of view, however, it is still extremely unclear exactly what gut health is, how it can be defined and how it can be measured. The GI barrier adjacent to the GI microbiota appears to be the key to understanding the complex mechanisms that maintain gut health. Any impairment of the GI barrier can increase the risk of developing infectious, inflammatory and functional GI diseases, as well as extraintestinal diseases such as immune-mediated and metabolic disorders. Less clear, however, is whether GI discomfort in general can also be related to GI barrier functions. In any case, methods of assessing, improving and maintaining gut health-related GI functions are of major interest in preventive medicine
Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats
- …
