525 research outputs found

    The Discovery of Extended Thermal X-ray Emission from PKS 2152-699: Evidence for a `Jet-cloud' Interaction

    Full text link
    A Chandra ACIS-S observation of PKS 2152-699 reveals thermal emission from a diffuse region around the core and a hotspot located 10" northeast from the core. This is the first detection of thermal X-ray radiation on kiloparsec scales from an extragalactic radio source. Two other hotspots located 47" north-northeast and 26" southwest from the core were also detected. Using a Raymond-Smith model, the first hotspot can be characterized with a thermal plasma temperature of 2.6×106\times10^6 K and an electron number density of 0.17 cm3^{-3}. These values correspond to a cooling time of about 1.6×107\times10^7 yr. In addition, an emission line from the hotspot, possibly Fe xxv, was detected at rest wavelength 10.04\AA. The thermal X-ray emission from the first hotspot is offset from the radio emission but is coincident with optical filaments detected with broadband filters of HST/WFPC2. The best explanation for the X-ray, radio, and optical emission is that of a `jet-cloud' interaction. The diffuse emission around the nucleus of PKS 2152-699 can be modeled as a thermal plasma with a temperature of 1.2×107\times10^7 K and a luminosity of 1.8×1041\times10^{41} erg s1^{-1}. This emission appears to be asymmetric with a small extension toward Hotspot A, similar to a jet. An optical hotspot (EELR) is seen less than an arcsecond away from this extension in the direction of the core. This indicates that the extension may be caused by the jet interacting with an inner ISM cloud, but entrainment of hot gas is unavoidable. Future observations are discussed.Comment: To appear in the Astrophysical Journal 21 pages, 5 Postscript figures, 1 table, AASTeX v. 5.

    Jet-Induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C41.17

    Full text link
    The high redshift radio galaxy 4C41.17 consists of a powerful radio source in which previous work has shown that there is strong evidence for jet-induced star formation along the radio axis. We argue that nuclear photoionization is not responsible for the excitation of the emission line clouds and we construct a jet-cloud interaction model to explain the major features revealed by the data. The interaction of a high-powered jet with a dense cloud in the halo of 4C41.17 produces shock-excited emission-line nebulosity through ~1000 km/s shocks and induces star formation. The CIII to CIV line ratio and the CIV luminosity emanating from the shock, imply that the pre-shock density in the line-emitting cloud is high enough (~1-10 cm^-3) that shock initiated star formation could proceed on a timescale of order a few x 10^6 yrs, well within the estimated dynamical age of the radio source. Broad (FWHM ~ 100 - 1400 km/s) emission lines are attributed to the disturbance of the gas cloud by a partial bow--shock and narrow emission lines (FWHM ~ 500 - 650 km/s) (in particular CIV) arise in precursor emission in relatively low metallicity gas. The implied baryonic mass ~ 8 \times 10^{10} solar masses of the cloud is high and implies that Milky Way size condensations existed in the environments of forming radio galaxies at a redshift of 3.8. Our interpretation of the data provides a physical basis for the alignment of the radio, emission-line and UV continuum images in some of the highest redshift radio galaxies and the analysis presented here may form a basis for the calculation of densities and cloud masses in other high redshift radio galaxies.Comment: 18 pages, 5 figures; uses astrobib.sty and aaspp4.sty. Better versions of figures available via anonymous from ftp://mso.anu.edu.au:pub/pub/geoff/4C41.1

    The impact of the warm outflow in the young (GPS) radio source & ULIRG PKS 1345+12 (4C 12.50)

    Get PDF
    (Abridged) We present new deep VLT/FORS optical spectra with intermediate resolution and large wavelength coverage of the GPS radio source and ULIRG PKS1345+12 (4C12.50; z=0.122), taken with the aim of investigating the impact of the nuclear activity on the circumnuclear ISM. PKS1345+12 is a powerful quasar and is also the best studied case of an emission line outflow in a ULIRG. Using the density sensitive transauroral emission lines [S II]4068,4076 and [O II]7318,7319,7330,7331, we pilot a new technique to accurately model the electron density for cases in which it is not possible to use the traditional diagnostic [S II]6716/6731, namely sources with highly broadened complex emission line profiles and/or high (Ne > 10^4 cm^-3) electron densities. We measure electron densities of Ne=2.94x10^3 cm^-3, Ne=1.47x10^4 cm^-3 and Ne=3.16x10^5 cm^-3 for the regions emitting the narrow, broad and very broad components respectively. We calculate a total mass outflow rate of 8 M_sun yr^-1. We estimate the total mass in the warm gas outflow is 8x10^5 M_sun. The total kinetic power in the warm outflow is 3.4x10^42 erg s^-1. We find that only a small fraction (0.13% of Lbol) of the available accretion power is driving the warm outflow, significantly less than currently required by the majority of quasar feedback models (~5-10\% of Lbol), but similar to recent findings by Hopkins et al. (2010) for a two-stage feedback model. The models also predict that AGN outflows will eventually remove the gas from the bulge of the host galaxy. The visible warm outflow in PKS1345+12 is not currently capable of doing so. However, it is entirely possible that much of the outflow is either obscured by a dense and dusty natal cocoon and/or in cooler or hotter phases of the ISM. This result is important not just for studies of young (GPS/CSS) radio sources, but for AGN in general.Comment: Accepted for publication in MNRAS. 11 pages, 4 figure

    Fast Outflows of Neutral Hydrogen in Radio Galaxies

    Get PDF
    AGN activity is known to drive fast outflows of gas. We report the discovery of fast outflows of neutral gas with velocities over 1000 km/s in a number of radio galaxies. In the best studied object, 3C~293, the kinematical properties of the neutral and ionised outflows are similar, indicating a common origin. Moreover, the outflow appears to be located near the radio lobes and not near the nucleus. This suggests that the interaction between the radio jet and the ISM is driving the outflow.Comment: To appear in the proceedings of IAU Symposium 222,"The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", eds Storchi-Bergmann et al; 2 pages, 1 figur

    Highly extinguished emission line outflows in the young radio source PKS 1345+12

    Get PDF
    (Abridged) We present new, intermediate resolution spectra (~4A) of the compact radio source PKS 1345+12. Our spectra clearly show extended line emission (~20kpc) consistent with the asymmetric halo of diffuse emission observed in optical and infra-red images. In the nucleus we observe complex emission line profiles requiring 3 Gaussian components (narrow, intermediate and broad). The broadest component (FWHM ~2000 km/s) is blue shifted by ~2000 km/s with respect to the galaxy halo and HI absorption. We interpret this as material in outflow. We find evidence for high reddening and measure E(B-V)>0.92 for the broadest component. From [S II]6716,6731 we estimate electron densities of n_e5300 cm^{-3} and n_{e}>4200 cm^{-3} for the regions emitting the narrow, intermediate and broad components respectively. We calculate a total mass of line emitting gas of M_{gas}<10^6 solar masses. Not all emission line profiles can be reproduced by the same model: [O I]6300,6363 and [S II] require separate, unique models. We argue that PKS 1345+12 is a young radio source whose nuclear regions are enshrouded in a dense cocoon of gas and dust. The radio jets are expanding, sweeping material out of the nuclear regions. Emission originates from three kinematically distinct regions though gradients (e.g. density, ionisation potential, acceleration) must exist across the regions responsible for the emission of the intermediate and broad components.Comment: Accepted for publication in MNRAS, 13 pages, 8 postscript figure

    The evidence for jet-cloud interactions in a sample of high/intermediate-redshift radio galaxies

    Full text link
    We present the result obtained from a study, based on long-slit spectroscopy, of the kinematics and ionization mechanisms of the line-emitting gas for a sample of four high/intermediate-redshift radio galaxies. In two of the galaxies (3C352 and 3C435A) the radio sources are of the same scale as the emission-line regions, whereas in the other two (3C34 and 3C330) the radio sources are extended on a larger scale than the emission-line structures. We see evidence for shock-acceleration of the emission-line gas in the extended regions of all the galaxies, even in the largest radio sources of our sample, in which the radio hot spots have passed the extended gas of the galaxies. The extended regions present highly disturbed kinematics (line-splitting and/or underlying broad components), which are difficult to explain if we do not consider a strong interaction between the radio-emitting components and the ambient gas. However, the dominant ionization mechanism of the line-emitting gas remains uncertain. We have compared the optical diagnostic line ratios of the galaxies in our sample with both AGN-photoionization and shock-ionization models. We find a lack of consistency in explaining the main ionization mechanism of the emission-line gas. This suggest that, if the extended regions are shock-ionized, some of the assumptions implicit in the shock models may need to be reconsidered. In addition, we have investigated the nebular continuum cointribution to the UV excess in the galaxies of our sample. We find a substantial nebular emission contribution to the UV continuum in all the cases. However, after the subtraction iof the nebular component, a significant UV excess remains in the extended nebulae of most of the objects.Comment: 33 pages, 24 figures, accepted for publication in MNRAS. (Abstract shortened for astro-ph

    Gas outflows in radio galaxies

    Get PDF
    We present a summary of our recent results on gas outflows in radio galaxies. Fast outflows (up to 2000 km/s) have been detected both in ionized and neutral gas. The latter is particularly surprising as it shows that, despite the extremely energetic phenomena occurring near an AGN, some of the outflowing gas remains, or becomes again, neutral. These results are giving new and important insights on the physical conditions of the gaseous medium around an AGN.Comment: To appear in the proceedings of the IAU Symposium #217, Recycling Intergalactic and Interstellar Matter, eds. P.-A. Duc, J. Braine, and E. Brinks, 6 pages. The full paper with high resolution images can be downloaded from http://www.astron.nl/~morganti/Papers/outflows.ps.g

    The origin of the infrared emission in radio galaxies. III. Analysis of 3CRR objects

    Get PDF
    We present Spitzer photometric data for a complete sample of 19 low redshift (z<0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid- to far-infrared (MFIR) emission from radio-loud AGN. Our results show a correlation between AGN power (indicated by [OIII] 5007 emission line luminosity) and 24 micron luminosity. This result is consistent with the 24 micron thermal emission originating from warm dust heated directly by AGN illumination. Applying the same correlation test for 70 micron luminosity against [OIII] luminosity we find this relation to suffer from increased scatter compared to that of 24 micron. In line with our results for the higher-radio-frequency-selected 2Jy sample, we are able to show that much of this increased scatter is due to heating by starbursts which boost the far-infrared emission at 70 micron in a minority of objects (17-35%). Overall this study supports previous work indicating AGN illumination as the dominant heating mechanism for MFIR emitting dust in the majority of low to intermediate redshift radio galaxies (0.03<z<0.7), with the advantage of strong statistical evidence. However, we find evidence that the low redshift broad-line objects (z<0.1) are distinct in terms of their positions on the MFIR vs. [OIII] correlations.Comment: 31 pages, 3 figures, accepted for publication to Ap
    corecore