736 research outputs found
Wiedemann-Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2
The in-plane thermal conductivity kappa(T) and electrical resistivity rho(T)
of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic
fields H parallel and perpendicular to the tetragonal c axis, through the
field-tuned quantum critical point, Hc, at which antiferromagnetic order ends.
The thermal and electrical resistivities, w(T) and rho(T), show a linear
temperature dependence below 1 K, typical of the non-Fermi liquid behavior
found near antiferromagnetic quantum critical points, but this dependence does
not persist down to T = 0. Below a characteristic temperature T* ~ 0.35 K,
which depends weakly on H, w(T) and rho(T) both deviate downward and converge
in the T = 0 limit. We propose that T* marks the onset of short-range magnetic
correlations, persisting beyond Hc. By comparing samples of different purity,
we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc,
implying that no fundamental breakdown of quasiparticle behavior occurs in this
material. The overall phenomenology of heat and charge transport in YbRh2Si2 is
similar to that observed in the heavy-fermion metal CeCoIn5, near its own
field-tuned quantum critical point.Comment: 8 figures, 8 page
Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor
The transport of heat and charge in the overdoped cuprate superconductor
Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal
state, obtained by applying a magnetic field greater than the upper critical
field, the Wiedemann-Franz law is verified to hold perfectly. In the
superconducting state, a large residual linear term is observed in the thermal
conductivity, in quantitative agreement with BCS theory for a d-wave
superconductor. This is compelling evidence that the electrons in overdoped
cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev.
Lett. 89, 147003 (2002
Ballistic magnon transport and phonon scattering in the antiferromagnet NdCuO
The thermal conductivity of the antiferromagnet NdCuO was measured
down to 50 mK. Using the spin-flop transition to switch on and off the acoustic
Nd magnons, we can reliably separate the magnon and phonon contributions to
heat transport. We find that magnons travel ballistically below 0.5 K, with a
thermal conductivity growing as , from which we extract their velocity. We
show that the rate of scattering of acoustic magnons by phonons grows as ,
and the scattering of phonons by magnons peaks at twice the average Nd magnon
frequency.Comment: 4 pages, 3 figures, one figure modifie
Dynamic charge inhomogenity in cuprate superconductors
The inelastic x-ray scattering spectrum for phonons of -symmetry
including the CuO bond-stretching phonon dispersion is analyzed by a Lorentz
fit in HgBaCuO and BiSrCuO, respectively, using
recently calculated phonon frequencies as input parameters. The resulting mode
frequencies of the fit are almost all in good agreement with the calculated
data. An exception is the second highest -branch compromising the
bond-stretching modes which disagrees in both compounds with the calculations.
This branch unlike the calculations shows an anomalous softening with a minimum
around the wavevector \vc{q}=\frac{2\pi}{a}(0.25, 0, 0). Such a disparity
with the calculated results, that are based on the assumption of an undisturbed
translation- and point group invariant electronic structure of the CuO plane,
indicates some {\it static} charge inhomogenities in the measured probes. Most
likely these will be charge stripes along the CuO bonds which have the
strongest coupling to certain longitudinal bond-stretching modes that in turn
selfconsistently induce corresponding {\it dynamic} charge inhomogenities. The
symmetry breaking by the mix of dynamic and static charge inhomogenities can
lead to a reconstruction of the Fermi surface into small pockets.Comment: 7 pages, 4 figure
The Origin of Anomalous Low-Temperature Downturns in the Thermal Conductivity of Cuprates
We show that the anomalous decrease in the thermal conductivity of cuprates
below 300 mK, as has been observed recently in several cuprate materials
including PrCeCuO in the field-induced normal state,
is due to the thermal decoupling of phonons and electrons in the sample. Upon
lowering the temperature, the phonon-electron heat transfer rate decreases and,
as a result, a heat current bottleneck develops between the phonons, which can
in some cases be primarily responsible for heating the sample, and the
electrons. The contribution that the electrons make to the total low- heat
current is thus limited by the phonon-electron heat transfer rate, and falls
rapidly with decreasing temperature, resulting in the apparent low- downturn
of the thermal conductivity. We obtain the temperature and magnetic field
dependence of the low- thermal conductivity in the presence of
phonon-electron thermal decoupling and find good agreement with the data in
both the normal and superconducting states.Comment: 8 pages, 5 figure
Influence of a magnetic field on the antiferromagnetic order in UPt_3
A neutron diffraction experiment was performed to investigate the effect of a
magnetic field on the antiferromagnetic order in the heavy fermion
superconductor UPt_3. Our results show that a field in the basal plane of up to
3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain
nor rotate the moment. This has a direct impact on current theories for the
superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.
- …
