736 research outputs found

    Wiedemann-Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

    Get PDF
    The in-plane thermal conductivity kappa(T) and electrical resistivity rho(T) of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point, Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w(T) and rho(T), show a linear temperature dependence below 1 K, typical of the non-Fermi liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T* ~ 0.35 K, which depends weakly on H, w(T) and rho(T) both deviate downward and converge in the T = 0 limit. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond Hc. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.Comment: 8 figures, 8 page

    Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor

    Full text link
    The transport of heat and charge in the overdoped cuprate superconductor Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal state, obtained by applying a magnetic field greater than the upper critical field, the Wiedemann-Franz law is verified to hold perfectly. In the superconducting state, a large residual linear term is observed in the thermal conductivity, in quantitative agreement with BCS theory for a d-wave superconductor. This is compelling evidence that the electrons in overdoped cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev. Lett. 89, 147003 (2002

    Ballistic magnon transport and phonon scattering in the antiferromagnet Nd2_2CuO4_4

    Full text link
    The thermal conductivity of the antiferromagnet Nd2_2CuO4_4 was measured down to 50 mK. Using the spin-flop transition to switch on and off the acoustic Nd magnons, we can reliably separate the magnon and phonon contributions to heat transport. We find that magnons travel ballistically below 0.5 K, with a thermal conductivity growing as T3T^3, from which we extract their velocity. We show that the rate of scattering of acoustic magnons by phonons grows as T3T^3, and the scattering of phonons by magnons peaks at twice the average Nd magnon frequency.Comment: 4 pages, 3 figures, one figure modifie

    Dynamic charge inhomogenity in cuprate superconductors

    Full text link
    The inelastic x-ray scattering spectrum for phonons of Δ1\Delta_{1}-symmetry including the CuO bond-stretching phonon dispersion is analyzed by a Lorentz fit in HgBa2_{2}CuO4_{4} and Bi2_{2}Sr2_{2}CuO6_{6}, respectively, using recently calculated phonon frequencies as input parameters. The resulting mode frequencies of the fit are almost all in good agreement with the calculated data. An exception is the second highest Δ1\Delta_{1}-branch compromising the bond-stretching modes which disagrees in both compounds with the calculations. This branch unlike the calculations shows an anomalous softening with a minimum around the wavevector \vc{q}=\frac{2\pi}{a}(0.25, 0, 0). Such a disparity with the calculated results, that are based on the assumption of an undisturbed translation- and point group invariant electronic structure of the CuO plane, indicates some {\it static} charge inhomogenities in the measured probes. Most likely these will be charge stripes along the CuO bonds which have the strongest coupling to certain longitudinal bond-stretching modes that in turn selfconsistently induce corresponding {\it dynamic} charge inhomogenities. The symmetry breaking by the mix of dynamic and static charge inhomogenities can lead to a reconstruction of the Fermi surface into small pockets.Comment: 7 pages, 4 figure

    The Origin of Anomalous Low-Temperature Downturns in the Thermal Conductivity of Cuprates

    Full text link
    We show that the anomalous decrease in the thermal conductivity of cuprates below 300 mK, as has been observed recently in several cuprate materials including Pr2x_{2-x}Cex_xCuO7δ_{7-\delta} in the field-induced normal state, is due to the thermal decoupling of phonons and electrons in the sample. Upon lowering the temperature, the phonon-electron heat transfer rate decreases and, as a result, a heat current bottleneck develops between the phonons, which can in some cases be primarily responsible for heating the sample, and the electrons. The contribution that the electrons make to the total low-TT heat current is thus limited by the phonon-electron heat transfer rate, and falls rapidly with decreasing temperature, resulting in the apparent low-TT downturn of the thermal conductivity. We obtain the temperature and magnetic field dependence of the low-TT thermal conductivity in the presence of phonon-electron thermal decoupling and find good agreement with the data in both the normal and superconducting states.Comment: 8 pages, 5 figure

    Influence of a magnetic field on the antiferromagnetic order in UPt_3

    Full text link
    A neutron diffraction experiment was performed to investigate the effect of a magnetic field on the antiferromagnetic order in the heavy fermion superconductor UPt_3. Our results show that a field in the basal plane of up to 3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain nor rotate the moment. This has a direct impact on current theories for the superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.
    corecore