219 research outputs found
--Radioactive Cosmic Rays in a diffusion model: test for a local bubble?
In the present paper, we extend the analysis of Maurin et al. (2001) and
Donato et al. (2001) to the -radioactive nuclei Be, Al and
Cl. These species are be shown to be particularly sensitive to the
properties of the local interstellar medium (LISM). As studies of the LISM
suggest that we live in an underdense bubble of extent r_{hole} \sim 50 - 200
\unit{pc}, this local feature must be taken into account. We present a
modified version of our diffusion model which describes the underdensity as a
hole in the galactic disc. It is found that the presence of the bubble leads to
a decrease in the radioactive fluxes which can be approximated by a simple
factor where is the
typical distance travelled by a radioactive nucleus before it decays. We find
that each of the radioactive nuclei independently point towards a bubble radius
\lesssim 100 \unit{pc}. If these nuclei are considered simultaneously, only
models with a bubble radius r_{hole} \sim 60 - 100 \unit{pc} are marginally
consistent with data. In particular, the standard case r_{hole}=0 \unit{pc}
is disfavoured. Our main concern is about the consistency of the currently
available data, especially Al/Al.Comment: 21 pages, 11 figures, Latex, macro aa.cls, to appear in A&
Antiproton and Positron Signal Enhancement in Dark Matter Mini-Spikes Scenarios
The annihilation of dark matter (DM) in the Galaxy could produce specific
imprints on the spectra of antimatter species in Galactic cosmic rays, which
could be detected by upcoming experiments such as PAMELA and AMS02. Recent
studies show that the presence of substructures can enhance the annihilation
signal by a "boost factor" that not only depends on energy, but that is
intrinsically a statistical property of the distribution of DM substructures
inside the Milky Way. We investigate a scenario in which substructures consist
of "mini-spikes" around intermediate-mass black holes. Focusing on
primary positrons and antiprotons, we find large boost factors, up to a few
thousand, that exhibit a large variance at high energy in the case of positrons
and at low energy in the case of antiprotons. As a consequence, an estimate of
the DM particle mass based on the observed cut-off in the positron spectrum
could lead to a substantial underestimate of its actual value.Comment: 13 pages, 9 figures, minor changes, version accepted for publication
in PR
CRDB: a database of charged cosmic rays
This paper gives a description of a new on-line database
http://lpsc.in2p3.fr/crdb and associated on-line tools (data selection, data
export, plots, etc.) for charged cosmic-ray measurements. The experimental
setups (type, flight dates, techniques) from which the data originate are
included in the database, along with the references to all relevant
publications. The database relies on the MySQL5 engine. The web pages and
queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and
table-sorter third-party libraries. In this first release, we restrict
ourselves to Galactic cosmic rays with Z<=30 and a kinetic energy per nucleon
up to a few tens of TeV/n. This corresponds to more than 200 different
sub-experiments (i.e., different experiments, or data from the same experiment
flying at different times) in as many publications. We set up a cosmic-ray
database and provide tools to sort and visualise the data. New data can be
submitted, providing the community with a collaborative tool to archive past
and future cosmic-ray measurements. Any help/ideas to further expand and/or
complement the database is welcome (please contact [email protected]).Comment: 13 pages, 6 figures: new Sect. 2.3 on Solar modulation parameters in
CRDB v2.1, see http://lpsc.in2p3.fr/crd
TeV cosmic-ray proton and helium spectra in the myriad model
Recent measurements of cosmic ray proton and helium spectra show a hardening
above a few hundreds of GeV. This excess is hard to understand in the framework
of the conventional models of Galactic cosmic ray production and propagation.
We propose here to explain this anomaly by the presence of local sources
(myriad model). Cosmic ray propagation is described as a diffusion process
taking place inside a two-zone magnetic halo. We calculate the proton and
helium fluxes at the Earth between 50 GeV and 100 TeV. Improving over a similar
analysis, we consistently derive these fluxes by taking into account both local
and remote sources for which a unique injection rate is assumed. We find cosmic
ray propagation parameters compatible with B/C measurements and for which the
proton and helium spectra remarkably agree with the PAMELA and CREAM
measurements over four decades in energy.Comment: 5 pages, 3 figure
Spallation dominated propagation of Heavy Cosmic Rays and the Local Interstellar Medium (LISM)
Measurements of ultra heavy nuclei at GeV/n energies in the galactic cosmic
radiation address the question of the sources (nucleosynthetic s- and
r-processes). As such, the determination of CR source abundances is a promising
way to discriminate between existing nucleosynthesis models. For primary
species (nuclei present and accelerated at sources), it is generally assumed
that the relative propagated abundances, if they are close in mass, are not too
different from their relative source abundances. Besides, the range of the
correction factor associated to propagation has been estimated in weighted slab
models only. Heavy CRs that are detected near Earth were accelerated from
regions that are closer to us than were the light nuclei. Hence, the geometry
of sources in the Solar neighbourhood, and as equally important, the geometry
of gas in the same region, must be taken into account. In this paper, a two
zone diffusion model is used, and as was previously investigated for
radioactive species, we report here on the impact of the local interstellar
medium (LISM) feature (under-dense medium over a scale ~100 pc) on primary and
secondary stable nuclei propagated abundances. Going down to Fe nuclei, the
connection between heavy and light abundances is also inspected. A general
trend is found that decreases the UHCR source abundances relative to the HCR
ones. This could have an impact on the level of r-process required to reproduce
the data.Comment: 12 pages, 9 figures, accepted by A&A. Comparison with truncated
weighted slab and discussion added. Figure 8 modified. New appendix on
truncated weighted slab techniqu
- …
