26 research outputs found
Effective recovery of highly purified CD326+ tumor cells from lavage fluid of patients treated with a novel cell-free and concentrated ascites reinfusion therapy (KM-CART)
One-Step Detection of the 2009 Pandemic Influenza A(H1N1) Virus by the RT-SmartAmp Assay and Its Clinical Validation
<div><h3>Background</h3><p>In 2009, a pandemic (pdm) influenza A(H1N1) virus infection quickly circulated globally resulting in about 18,000 deaths around the world. In Japan, infected patients accounted for 16% of the total population. The possibility of human-to-human transmission of highly pathogenic novel influenza viruses is becoming a fear for human health and society.</p> <h3>Methodology</h3><p>To address the clinical need for rapid diagnosis, we have developed a new method, the “RT-SmartAmp assay”, to rapidly detect the 2009 pandemic influenza A(H1N1) virus from patient swab samples. The RT-SmartAmp assay comprises both reverse transcriptase (RT) and isothermal DNA amplification reactions in one step, where RNA extraction and PCR reaction are not required. We used an exciton-controlled hybridization-sensitive fluorescent primer to specifically detect the HA segment of the 2009 pdm influenza A(H1N1) virus within 40 minutes without cross-reacting with the seasonal A(H1N1), A(H3N2), or B-type (Victoria) viruses.</p> <h3>Results and Conclusions</h3><p>We evaluated the RT-SmartAmp method in clinical research carried out in Japan during a pandemic period of October 2009 to January 2010. A total of 255 swab samples were collected from outpatients with influenza-like illness at three hospitals and eleven clinics located in the Tokyo and Chiba areas in Japan. The 2009 pdm influenza A(H1N1) virus was detected by the RT-SmartAmp assay, and the detection results were subsequently compared with data of current influenza diagnostic tests (lateral flow immuno-chromatographic tests) and viral genome sequence analysis. In conclusion, by the RT-SmartAmp assay we could detect the 2009 pdm influenza A(H1N1) virus in patients' swab samples even in early stages after the initial onset of influenza symptoms. Thus, the RT-SmartAmp assay is considered to provide a simple and practical tool to rapidly detect the 2009 pdm influenza A(H1N1) virus.</p> </div
Isothermal Single Nucleotide Polymorphism Genotyping and Direct PCR from Whole Blood Using a Novel Whole-Blood Lysis Buffer
Impact of dendritic cell vaccines pulsed with Wilms’ tumour-1 peptide antigen on the survival of patients with advanced non-small cell lung cancers
Gemcitabine treatment enhances HER2 expression in low HER2-expressing breast cancer cells and enhances the antitumor effects of trastuzumab emtansine
Prognostic factors related to add-on dendritic cell vaccines on patients with inoperable pancreatic cancer receiving chemotherapy: a multicenter analysis
Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple Wilms' Tumor 1 (WT1)–Specific MHC Class I/II–Restricted Epitopes for Pancreatic Cancer
Abstract
Purpose: We performed a phase I trial to investigate the safety, clinical responses, and Wilms' tumor 1 (WT1)-specific immune responses following treatment with dendritic cells (DC) pulsed with a mixture of three types of WT1 peptides, including both MHC class I and II–restricted epitopes, in combination with chemotherapy.
Experimental Design: Ten stage IV patients with pancreatic ductal adenocarcinoma (PDA) and 1 patient with intrahepatic cholangiocarcinoma (ICC) who were HLA-positive for A*02:01, A*02:06, A*24:02, DRB1*04:05, DRB1*08:03, DRB1*15:01, DRB1*15:02, DPB1*05:01, or DPB1*09:01 were enrolled. The patients received one course of gemcitabine followed by biweekly intradermal vaccinations with mature DCs pulsed with MHC class I (DC/WT1-I; 2 PDA and 1 ICC), II (DC/WT1-II; 1 PDA), or I/II–restricted WT1 peptides (DC/WT1-I/II; 7 PDA), and gemcitabine.
Results: The combination therapy was well tolerated. WT1-specific IFNγ-producing CD4+ T cells were significantly increased following treatment with DC/WT1-I/II. WT1 peptide-specific delayed-type hypersensitivity (DTH) was detected in 4 of the 7 patients with PDA vaccinated with DC/WT1-I/II and in 0 of the 3 patients with PDA vaccinated with DC/WT1-I or DC/WT1-II. The WT1-specific DTH-positive patients showed significantly improved overall survival (OS) and progression-free survival (PFS) compared with the negative control patients. In particular, all 3 patients with PDA with strong DTH reactions had a median OS of 717 days.
Conclusions: The activation of WT1-specific immune responses by DC/WT1-I/II combined with chemotherapy may be associated with disease stability in advanced pancreatic cancer. Clin Cancer Res; 20(16); 4228–39. ©2014 AACR.</jats:p
Usefulness of Peptide Nucleic Acid (PNA)-Clamp Smart Amplification Process Version 2 (SmartAmp2) for Clinical Diagnosis of KRAS Codon12 Mutations in Lung Adenocarcinoma: Comparison of PNA-Clamp SmartAmp2 and PCR-Related Methods
KRAS is an oncogene that can be activated by mutations. Patients with non-small cell lung cancer who have KRAS mutations do not respond to tyrosine kinase inhibitors; therefore, accurate detection of KRAS mutations is important for deciding therapeutic strategies. Although sequencing-related techniques have been frequently used, they are usually too complex, have low sensitivity, and are time-consuming for routine screening in clinical situations. We evaluated peptide nucleic acid (PNA)-clamp smart amplification process version 2 (SmartAmp2) as a detection method for KRAS codon 12 mutations in patient specimens compared with traditional sequencing and polymerase chain reaction-related methods. Among 172 lung adenocarcinoma samples, direct sequencing, enzyme-enriched sequencing, and PNA-enriched sequencing showed that 16 (9.3%), 26 (15.7%), and 28 (16.3%) tumors, respectively, contained KRAS mutations in codon 12. Using PNA-clamp SmartAmp2, we could identify 31 (18.0%) tumors that had KRAS mutations in codon 12 within 60 minutes, three of which were undetected by polymerase chain reaction-related methods. On the other hand, we examined 30 nonmalignant peripheral lung tissue specimens and found no mutations in any of the samples using PNA-clamp SmartAmp2. In this study, we confirmed that PNA-clamp SmartAmp2 has high sensitivity and accuracy and is suitable for the clinical diagnosis of KRAS codon 12 mutations
Rapid Screening Assay for KRAS Mutations by the Modified Smart Amplification Process
Previously, the smart amplification process version 2 (SMAP-2) was developed to detect mutations from tissue and in crude cell lysates and has been used for rapid diagnosis of specific somatic mutations with single-nucleotide precision. The purpose of this study was to develop a rapid and practical method to detect cancer and metastasis in specimens using the SMAP-2 assay. We developed modified SMAP-2 assays that enabled detection of any change in a single codon using a single assay. Rapid SMAP-2 screening assays are suitable for routine clinical identification of critical amino acid substitutions such as codon 12 mutations in KRAS. Primers bracketing the first two nucleotides of KRAS codon 12 were designed so that all possible alleles would be amplified by the SMAP-2 assay. In combination with the peptide nucleic acid (PNA) with exact homology to the wild-type allele, our assay amplified all mutant alleles except for the wild-type sequence. With this new assay design (termed PNA-clamp SMAP-2), we could detect KRAS mutations within 60 minutes, including sample preparation. We compared results from PNA-clamp SMAP-2 assay, polymerase chain reaction-restriction fragment length polymorphism, and direct sequencing of clinical samples from pancreatic cancer patients and demonstrated perfect concordance. The PNA-clamp SMAP-2 method is a rapid, simple, and highly sensitive detection assay for cancer mutations
