819 research outputs found

    Synthesis and antihepatotoxic and antiproliferative activities of di- and tri-O-caffeoylquinic acid derivatives

    Get PDF
    Methyl di- and tri-O-caffeoylquinates were synthesized by esterification of methyl quinate with di-O-acetylcaffeoyl chloride, following deprotection of the acetyl groups. Moreover, 4,5-di-O-caffeoylquinic acid was synthesized by esterification of quinide with di-O-acetylcaffeoyl chloride, followed by a hydrolysis of product quinide. These synthetic compounds were tested for their hepatoprotective activity on _D-galactosamine (_D-GalN)/tumor necrosis factor-α (TNF- α)-induced cell death in primary cultured mouse hepatocytes, which possessed significant hepatoprotective activity concentration-dependently. The activity was enhanced by the presence of caffeoyl group. On the other hand, they showed only weak antiproliferative activities against murine colon 26-L5 carcinoma, human HT-1080 fibrosarcoma, murine B16-BL6 melanoma, and human lung carcinoma A-549 cells. メチルジおよびトリカフェオイルキネート化合物1-4は,メチルキネート6をジアセチルカフェオイルクロライド7でエステル化した後,アセチル基の脱保護によって合成した。さらに,4,5-ジカフェオイルキナ酸5は,キニド8を7とエステル化して生成したキニド8aの加水分解により合成した。これらの合成した化合物1-5を用いてマウス初代培養肝細胞の_D-GalN/TNF-α誘発肝細胞死における肝保護活性の試験を行ったところ,濃度依存的な肝保護活性が認められた。その活性はカフェオイル基の存在により増強された。一方,これらの化合物1-5はマウス26-L5大腸癌腫,ヒトHT-1080繊維芽肉腫,マウスB16-BL6黒色種,及びヒトA-549肺癌腫に対し弱い細胞増殖抑制活性を示した

    Perplexing dynamics of Wolbachia proteins for cytoplasmic incompatibility

    Get PDF
    The mechanism of symbiont-induced cytoplasmic incompatibility (CI) has been a long-standing mystery. A new study on Wolbachia's Cif proteins in PLOS Biology provides supportive evidence for the "Host modification model, " although the alternative "Toxin-antidote model" is still in the running

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    Genome analysis of “Candidatus Aschnera chinzeii,” the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae)

    Get PDF
    Insect–microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont “Candidatus Aschnera chinzeii,” although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4–6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria

    Categorizing facial creases: A review

    Get PDF
    Ensuring uniformity in the nomenclature standardization of facial creases is important to enable the scholarly community to follow and debate the advancements in research. This review highlights the prevailing disparity in the nomenclature that refers to the same facial crease by researchers and laypeople, and suggests uniform names for the facial creases based on available literature. The previous and current trends in facial crease classification are also discussed. The nomenclature of the facial creases considered for this review include the following: the nasolabial fold, corner of the mouth lines, upper and lower lip creases around the mouth region, the mandibular folds, the bifid nose, the transverse nasal line, the vertical glabellar line, chin crease, the mental crease, four type of creases around the eyes, forehead creases, and periauricular creases. A figure illustrating the above facial creases is included as reference. It is hoped that the proposed standardization of nomenclature would ensure a more scientific referencing of facial creases enabling more effective scientific interaction among the scholarly community as well as the laypeople interested in the research and application of facial creases

    Entomological journals and publishing in Japan

    Get PDF
    Here I present an overview of entomological journals and publishing in Japan, thereby providing a convenient portal to the valuable scientific resources for the world’s entomological researchers and scientific communities. Currently, except for several international journals published fully in English such as Applied Entomology and Zoology and Entomological Science, many entomological and entomology-related journals in Japan are not indexed by major scientific databases like Web of Science, and therefore they are neither conveniently recognizable nor accessible for the world’s entomological communities. However, I point out that many of the contents of such journals are freely available via Japan’s public platforms for electronic scientific literature, Japan Science and Technology Information Aggregator, Electronic (J-stage) or Citation Information by National Institute of Informatics (CiNii). Here I list 32 entomological and entomology-related societies and their 45 journals, the majority of which belong to either the Union of Japanese Societies for Insect Sciences (UJSIS), the Union of the Japanese Societies for Systematic Biology (UJSSB), the Union of Japanese Societies for Natural History (UJSNH), or the Union of Japanese Societies for Biological Science (UJSBS), with their respective URL and open-access availability
    corecore