42 research outputs found

    Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level

    Full text link
    We compare the charge transport characteristics of heavy doped p- and n-Si-alkyl chain/Hg junctions. Photoelectron spectroscopy (UPS, IPES and XPS) results for the molecule-Si band alignment at equilibrium show the Fermi level to LUMO energy difference to be much smaller than the corresponding Fermi level to HOMO one. This result supports the conclusion we reach, based on negative differential resistance in an analogous semiconductor-inorganic insulator/metal junction, that for both p- and n-type junctions the energy difference between the Fermi level and LUMO, i.e., electron tunneling, controls charge transport. The Fermi level-LUMO energy difference, experimentally determined by IPES, agrees with the non-resonant tunneling barrier height deduced from the exponential length-attenuation of the current

    Can Conformally Coupled Modified Gravity Solve The Hubble Tension?

    Full text link
    The discrepancy between early-Universe inferences and direct measurements of the Hubble constant, known as the Hubble tension, recently became a pressing subject in high precision cosmology. As a result, a large variety of theoretical models have been proposed to relieve this tension. In this work we analyze a conformally-coupled modified gravity (CCMG) model of an evolving gravitational constant due to the coupling of a scalar field to the Ricci scalar, which becomes active around matter-radiation equality, as required for solutions to the Hubble tension based on increasing the sound horizon at recombination. The model is theoretically advantageous as it has only one free parameter in addition to the baseline Λ\LambdaCDM ones. Inspired by similar recent analyses of so-called early-dark-energy models, we constrain the CCMG model using a combination of early and late-Universe cosmological datasets. In addition to the Planck 2018 cosmic microwave background (CMB) anisotropies and weak lensing measurements, baryon acoustic oscillations and the Supernova H0 for the Equation of State datasets, we also use large-scale structure (LSS) datasets such as the Dark Energy Survey year 1 and the full-shape power spectrum likelihood from the Baryon Oscillation Spectroscopic Survey, including its recent analysis using effective field theory, to check the effect of the CCMG model on the (milder) S8 tension between the CMB and LSS. We find that the CCMG model can slightly relax the Hubble tension, with H0=69.6±1.6H_0 = 69.6 \pm 1.6 km/s/Mpc at 95% CL, while barely affecting the S8 tension. However, current data does not exhibit strong preference for CCMG over the standard cosmological model. Lastly, we show that the planned CMB-S4 experiment will have the sensitivity required to distinguish between the CCMG model and the more general class of models involving an evolving gravitational constant.Comment: 14 pages, 4 figures, 9 table

    21-cm fluctuations from primordial magnetic fields

    Full text link
    The fluid forces associated with primordial magnetic fields (PMFs) generate small-scale fluctuations in the primordial density field, which add to the ΛCDM\mathrm{\Lambda CDM} linear matter power spectrum on small scales. These enhanced small-scale fluctuations lead to earlier formation of galactic halos and stars and thus affect cosmic reionization. We study the consequences of these effects on 21 cm observables using the semi-numerical code 21cmFAST v3.1.3. We find the excess small-scale structure generates strong stellar radiation backgrounds in the early Universe, resulting in altered 21 cm global signals and power spectra commensurate with earlier reionization. We restrict the allowed PMF models using the CMB optical depth to reionization. Lastly, we probe parameter degeneracies and forecast experimental sensitivities with an information matrix analysis subject to the CMB optical depth bound. Our forecasts show that interferometers like HERA are sensitive to PMFs of order pG\sim \mathrm{pG}, nearly an order of magnitude stronger than existing and next-generation experiments.Comment: 20 pages, 7 figures -- v2, matches version accepted for publication in PR

    Probing gravitational slip with strongly lensed fast radio bursts

    Full text link

    Can conformally coupled modified gravity solve the Hubble tension?

    Full text link

    Memory access patterns

    Full text link

    MAPS

    Full text link
    GPUs play an increasingly important role in high-performance computing. While developing naive code is straightforward, optimizing massively parallel applications requires deep understanding of the underlying architecture. The developer must struggle with complex index calculations and manual memory transfers. This article classifies memory access patterns used in most parallel algorithms, based on Berkeley’s Parallel “Dwarfs.” It then proposes the MAPS framework, a device-level memory abstraction that facilitates memory access on GPUs, alleviating complex indexing using on-device containers and iterators. This article presents an implementation of MAPS and shows that its performance is comparable to carefully optimized implementations of real-world applications.</jats:p

    A Package for OpenCL Based Heterogeneous Computing on Clusters with Many GPU Devices

    No full text
    Abstract—Heterogeneous systems provide new opportunities to increase the performance of parallel applications on clusters with CPU and GPU architectures. Currently, applications that utilize GPU devices run their device-executable code on local devices in their respective hosting-nodes. This paper presents a package for running OpenMP, C++ and unmodified OpenCL applications on clusters with many GPU devices. This Many GPUs Package (MGP) includes an implementation of the OpenCL specifications and extensions of the OpenMP API that allow applications on one hosting-node to transparently utilize cluster-wide devices (CPUs and/or GPUs). MGP provides means for reducing the complexity of programming and running parallel applications on clusters, including scheduling based on task dependencies and buffer management. The paper presents MGP and the performance of its internals

    Constraining Primordial Magnetic Fields with Line-Intensity Mapping

    Full text link
    Primordial magnetic fields (PMFs) offer a compelling explanation for the origin of observed magnetic fields, especially on extragalactic scales. Such PMFs give rise to excess of power in small scale matter perturbations that could strongly influence structure formation. We study the impact of the magnetically enhanced matter power spectrum on the signal that will be observed by line-intensity mapping (LIM) surveys targeting carbon monoxide (CO) emission from star-forming galaxies at high redshifts. Specifically, the voxel intensity distribution of intensity maps provides access to small-scale information, which makes it highly sensitive to signatures of PMFs on matter overdensities. We present forecasts for future LIM CO surveys, finding that they can constrain PMF amplitudes as small as σB,00.041nG\sigma_{B,0}\sim0.04-1\,{\rm nG}, depending on the magnetic spectral index and the targeted redshifts.Comment: 9 pages, 3 figures, 2 table
    corecore