480 research outputs found
Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA
Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.
BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC.
METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months.
RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019).
CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies
Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice
10.1038/srep03754Scientific Reports4
Recommended from our members
Benefits of a ball and chain: simple environmental enrichments improve welfare and reproductive success in farmed American mink (Neovison vison)
Can simple enrichments enhance caged mink welfare? Pilot data from 756 sub-adults spanning three colour-types (strains) identified potentially practical enrichments, and suggested beneficial effects on temperament and fur-chewing. Our main experiment started with 2032 Black mink on three farms: from each of 508 families, one juvenile male-female pair was enriched (E) with two balls and a hanging plastic chain or length of hose, while a second pair was left as a non-enriched (NE) control. At 8 months, more than half the subjects were killed for pelts, and 302 new females were recruited (half enriched: ‘late E’). Several signs of improved welfare or productivity emerged. Access to enrichment increased play in juveniles. E mink were calmer (less aggressive in temperament tests; quieter when handled; less fearful, if male), and less likely to fur-chew, although other stereotypic behaviours were not reduced. On one farm, E females had lower cortisol (inferred from faecal metabolites). E males tended to copulate for longer. E females also weaned more offspring: about 10% more juveniles per E female, primarily caused by reduced rates of barrenness (‘late E’ females also giving birth to bigger litters on one farm), effects that our data cautiously suggest were partly mediated by reduced inactivity and changes in temperament. Pelt quality seemed unaffected, but E animals had cleaner cages. In a subsidiary side-study using 368 mink of a second colour-type (‘Demis’), similar temperament effects emerged, and while E did not reduce fur-chewing or improve reproductive success in this colour-type, E animals were judged to have better pelts. Overall, simple enrichments were thus beneficial. These findings should encourage welfare improvements on fur farms (which house 60-70 million mink p.a.) and in breeding centres where endangered mustelids (e.g. black-footed ferrets) often reproduce poorly. They should also stimulate future research into more effective practical enrichments
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Inflammatory bowel disease, such as Ulcerative colitis, is a risk factor for recurrent thromboembolic events: a case report
Ulcerative colitis (UC), a member of the family of inflammatory bowel disease (IBD), occurs worldwide. It has an incidence which in recent years has been rising in areas such as Southern Europe and Asia, while remaining relatively constant in Northern Europe and North America
Establishment of a New Cell Line from Lepidopteran Epidermis and Hormonal Regulation on the Genes
When an insect molts, old cuticle on the outside of the integument is shed by apolysis and a new cuticle is formed under the old one. This process is completed by the epidermal cells which are controlled by 20-hydroxyecdysone (20E) and juvenile hormone. To understand the molecular mechanisms of integument remolding and hormonal regulation on the gene expression, an epidermal cell line from the 5th instar larval integument of Helicoverpa armigera was established and named HaEpi. The cell line has been cultured continuously for 82 passages beginning on June 30, 2005 until now. Cell doubling time was 64 h. The chromosomes were granular and the chromosome mode was from 70 to 76. Collagenase I was used to detach the cells from the flask bottom. Non-self pathogen AcMNPV induced the cells to apoptosis. The cell line was proved to be an epidermal cell line based on its unique gene expression pattern. It responded to 20E and the non-steroidal ecdysone agonist RH-2485. Its gene expression could be knocked down using RNA interference. Various genes in the cell line were investigated based on their response to 20E. This new cell line represents a platform for investigating the 20E signaling transduction pathway, the immune response mechanism in lepidopteran epidermis and interactions of the genes
Systemic Treatments for Mesothelioma: Standard and Novel
Systemic therapy is the only treatment option for the majority of mesothelioma
patients, for whom age, co-morbid medical illnesses, non-epithelial histology, and locally advanced disease often preclude surgery. For many years, chemotherapy had a minimal impact on the natural history of this cancer, engendering considerable nihilism. Countless drugs were evaluated, most of which achieved response rates below 20% and median survival of <1 year. Several factors have hampered the evaluation of systemic regimens in patients with mesothelioma. The disease is uncommon, affecting only about 2500 Americans annually. Thus, most clinical trials are small, and randomized studies are challenging to accrue. There is significant heterogeneity within the patient populations of these small trials, for several reasons. Since all of the staging systems for mesothelioma are surgically based, it is almost impossible to accurately determine the stage of a patient who has not been resected. Patients with very early stage disease may be lumped together with far more advanced patients in the same study. The disease itself is heterogenous, with many different prognostic factors, most notably three pathologic subtypes—epithelial, sarcomatoid, and
biphasic—that have different natural histories, and varying responses to treatment. Finally, response assessment is problematic, since pleural-based lesions are difficult to measure accurately and reproducibly. Assessment criteria often vary between trials, making some cross-trial comparisons difficult to interpret. Despite these limitations, in recent years, there has been a surge of optimism regarding systemic treatment of this disease. Several cytotoxic agents have been shown to generate reproducible
responses, improve quality of life, or prolong survival in mesothelioma. Drugs with single-agent activity include pemetrexed, raltitrexed, vinorelbine, and vinflunine. The addition of pemetrexed or raltitrexed to cisplatin prolongs survival. The addition of cisplatin to pemetrexed, raltitrexed, gemcitabine, irinotecan, or vinorelbine improves response rate. The combination of pemetrexed plus cisplatin is considered the benchmark front-line regimen for this disease, based on a phase III trial in 456 patients that yielded a response rate of 41% and a median survival of 12.1 months. Vitamin supplementation with folic acid is essential to decrease toxicity, though recent data suggests that there may be an optimum dose of folic acid that should be administered; higher doses may diminish the effectiveness of pemetrexed. There are also several unresolved questions about the duration and timing of treatment with pemetrexed that are the subject of planned clinical trials. It is essential to recognize that the improvements observed with the pemetrexed/cisplatin combination, though real, are still modest. Other active drugs or drug combinations may be more appropriate for specific individuals, and further research is still needed to improve upon these results. Since the majority of mesotheliomas in the United States occur in the elderly, non-cisplatin-containing pemetrexed combinations may be more appropriate for some patients. Now that effective agents have been developed for initial treatment, several classical cytotoxic drugs and many novel agents are being evaluated in the second-line setting. These include drugs targeted against the epidermal growth factor, platelet-derived growth factor, vascular endothelial growth factor, src kinase, histone deacetylase, the proteasome, and mesothelin. Given the progress made in recent years, there is reason to believe that more effective treatments will continue to be developed
Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury
BACKGROUND: Falls in older people have been characterized extensively in the literature, however little has been reported regarding falls in middle-aged and younger adults. The objective of this paper is to describe the perceived cause, environmental influences and resultant injuries of falls in 1497 young (20–45 years), middle-aged (46–65 years) and older (> 65 years) men and women from the Baltimore Longitudinal Study on Aging. METHODS: A descriptive study where participants completed a fall history questionnaire describing the circumstances surrounding falls in the previous two years. RESULTS: The reporting of falls increased with age from 18% in young, to 21% in middle-aged and 35% in older adults, with higher rates in women than men. Ambulation was cited as the cause of the fall most frequently in all gender and age groups. Our population reported a higher percentage of injuries (70.5%) than previous studies. The young group reported injuries most frequently to wrist/hand, knees and ankles; the middle-aged to their knees and the older group to their head and knees. Women reported a higher percentage of injuries in all age groups. CONCLUSION: This is the first study to compare falls in young, middle and older aged men and women. Significant differences were found between the three age groups with respect to number of falls, activities engaged in prior to falling, perceived causes of the fall and where they fell
Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy.
Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT-PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival
- …
