368 research outputs found
Prolonged myoclonus after a single bolus dose of propofol
Propofol is a commonly used anaesthetic agent and is rarely associated with seizure-like phenomena. This case report presents a young woman with seizure-like phenomena lasting more than 4 weeks after a single dose of propofol. The underlying pathophysiology of this condition is poorly understood but a psychological component is possible in this case. © 2009 The Authors.postprin
Aspects of high density effective theory in QCD
We study an effective theory of QCD at high density in detail, including the
finite temperature effects and the leading order correction in
expansion. We investigate the Cooper pair gap equation and find that the
color-flavor locking phase is energetically preferred at high density. We also
find the color-superconducting phase transition occurs in dense quark matter
when the chemical potential is larger than and the
temperature is lower than 0.57 times the Cooper pair gap in the leading order
in the hard-dense-loop approximation. The quark-neutrino four-Fermi coupling
and the quark-axion coupling receive significant corrections in dense quark
matter.Comment: 23 pages, 5 figures. The gap equations are re-analyzed in the HDL
approximatio
Recommended from our members
Inhalant Mediated Allergy: Immunobiology, Clinical Manifestations and Diagnosis.
Inhalant allergen-mediated respiratory diseases, including asthma and allergic rhinitis, have become increasing global health issues. While air pollution is believed to favor allergic sensitization and intensify clinical symptoms of allergy, allergen sensitization can vary highly with geographical location, climate, and lifestyle differences. Pollen sensitization is higher in European countries, while dust mite is more common in regions with high humidity. Domestic pet sensitization is on the rising trend in industrialized nations, but the paradoxical effect of intensive cat exposure in early childhood is also observed. Clinical management of inhalant allergic diseases has greatly benefited from the immunological and mechanistic understanding of pathophysiology. In this review, we discuss the current knowledge on inhalant mediated allergic disorders with emphasis on (1) the major immune cells and relevant chemokines and cytokines in the sensitization and effector phase with aeroallergen exposure, (2) their manifestation in asthma and allergic rhinitis, (3) characterization of inhalant allergens, (4) chemical contributions to the development of allergic diseases, and (5) clinical diagnosis of aeroallergen sensitization and management of inhalant allergy. Knowledge on the role of Th2 skewing, IgE, basophil, mast cells, and eosinophils in respiratory allergic diseases are fundamental in the diagnosis and management of these disorders. Skin test, basophil activation test, and specific IgE component-resolved diagnostics are used for diagnosis and facilitate further management. Advances in the development of biologics and allergen-specific immunotherapy will strategize the future approaches in the clinical care of respiratory allergic diseases
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Developments in the Photonic Theory of Fluorescence
Conventional fluorescence commonly arises when excited molecules relax to their ground electronic state, and most of the surplus energy dissipates in the form of photon emission. The consolidation and full development of theory based on this concept has paved the way for the discovery of several mechanistic variants that can come into play with the involvement of laser input – most notably the phenomenon of multiphoton-induced fluorescence. However, other effects can become apparent when off-resonant laser input is applied during the lifetime of the initial excited state. Examples include a recently identified scheme for laser-controlled fluorescence. Other systems of interest are those in which fluorescence is emitted from a set of two or more coupled nanoemitters. This chapter develops a quantum theoretical outlook to identify and describe these processes, leading to a discussion of potential applications ranging from all-optical switching to the generation of optical vortices
Biologically active, high levels of interleukin-22 inhibit hepatic gluconeogenesis but do not affect obesity and its metabolic consequences
BACKGROUND: Interleukin-22 (IL-22), a cytokine with important functions in anti-microbial defense and tissue repair, has been recently suggested to have beneficial effects in obesity and metabolic syndrome in some but not in other studies. Here, we re-examined the effects of IL-22 on obesity, insulin resistance, and hepatic glucose metabolism. RESULTS: Genetic deletion of IL-22 did not affect high-fat-diet (HFD)-induced obesity and insulin resistance. IL-22 transgenic mice with relatively high levels of circulating IL-22 (~600 pg/ml) were completely resistant to Concanavalin A-induced liver injury but developed the same degree of high fat diet (HFD)-induced obesity, insulin resistance, and fatty liver as the wild-type littermate controls. Similarly, chronic treatment with recombinant mouse IL-22 (rmIL-22) protein did not affect HFD-induced obesity and the associated metabolic syndrome. In vivo treatment with a single dose of rmIL-22 downregulated the hepatic expression of gluconeogenic genes and subsequently inhibited hepatic gluconeogenesis and reduced blood glucose levels both in HFD-fed and streptozotocin (STZ)-treated mice without affecting insulin production. In vitro exposure of mouse primary hepatocytes to IL-22 suppressed glucose production and the expression of gluconeogenic genes. These inhibitory effects were partially reversed by blocking STAT3 or the AMPK signaling pathway. CONCLUSION: Biologically active, high levels of IL-22 do not affect obesity and the associated metabolic syndrome. Acute treatment with IL-22 inhibits hepatic gluconeogenesis, which is mediated via the activation of STAT3 and AMPK in hepatocytes
- …
